Skip to main content
Log in

Enhanced mechanical and thermal properties of poly(l-lactide) nanocomposites assisted by polydopamine-coated multiwalled carbon nanotubes

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Herein, a facile and noncovalent modification for multiwalled carbon nanotubes (MWNTs) is adopted by the self-polymerization of dopamine (DOPA). And, the polydopamine-coated MWNTs (D-MWNTs) were further incorporated into poly(l-lactide) (PLLA) matrix through the solvent-casting method. It is found that the D-MWNTs tend to be well dispersed in PLLA matrix than the pristine MWNTs and the D-MWNTs that can act as heterogeneous nucleators that evidently affect the morphology and crystallization behavior of PLLA. In addition, the significant improvement of dispersion and the interface interaction of PLLA/D-MWNTs, via dopamine coating between the MWNTs and PLLA matrix, results in enhanced mechanical and thermal properties and electrical conductivity. This facile methodology is believed to afford broad application potential in carbon nanotubes (CNTs)-based polymer nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Okada M (2002) Chemical syntheses of biodegradable polymers. Prog Polym Sci 27:87–133

    Article  CAS  Google Scholar 

  2. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84

    Article  CAS  Google Scholar 

  3. Gupta AP, Kumar V (2007) New emerging trends in synthetic biodegradable polymers-Polylactide: a critique. Eur Polym J 43:4053–4074

    Article  CAS  Google Scholar 

  4. Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12:1841–1846

    Article  CAS  Google Scholar 

  5. Zhang YQ, Xu HJ, Yang JJ, Chen SY, Ding YS, Wang ZG (2013) Significantly accelerated spherulitic growth rates for semicrystalline polymers through the layer-by-layer film method. Phys Chem C 117:5882–5893

    Article  CAS  Google Scholar 

  6. Xu H, Teng CQ, Yu MH (2006) Improvements of thermal property and crystallization behavior of PLLA based multiblock copolymer by forming stereocomplex with PDLA oligomer. Polymer 47:3922–3928

    Article  CAS  Google Scholar 

  7. Hong ZK, Zhang PB, He CL, Qiu XY, Liu AX, Chen L, Chen XS, Jing XB (2005) Nano-composite of poly(L-lactide) and surface grafted hydroxyapatite: mechanical properties and biocompatibility. Biomaterials 26:6296–6304

    Article  CAS  Google Scholar 

  8. Zhao YY, Qiu ZB, Yang WT (2008) Effect of functionalization of multiwalled nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(L-lactide). J Phys Chem B 112:16461–16468

    Article  CAS  Google Scholar 

  9. Yu J, Qiu ZB (2011) Preparation and properties of biodegradable poly(L-lactide)/octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites with enhanced crystallization rate via simple melt compounding. ACS Appl Mater Interfaces 3:890–897

    Article  CAS  Google Scholar 

  10. Ogata N, Jimenez G, Kawai H, Ogihara T (1997) Structure and thermal/mechanical properties of poly(l-lactide)-clay blend. J Polym Sci Part B: Polym Phys 35:389–396

    Article  CAS  Google Scholar 

  11. Li Y, Wang Y, Liu L, Han L, Xiang F, Zhou Z (2009) Crystallization improvement of poly(L-lactide) induced by functionalized multiwalled carbon nanotubes. J Polym Sci Part B: Polym Phys 47:326–339

    Article  CAS  Google Scholar 

  12. He LH, Sun J, Wang XX, Fan XH, Zhao QL, Cai LF, Song R, Ma Z, Huang W (2012) Unzipped multiwalled carbon nanotubes-incorporated poly(L-lactide) nanocomposites with enhanced interface and hydrolytic degradation. Mater Chem Phys 134:1059–1066

    Article  CAS  Google Scholar 

  13. Xu YH, Li QF, Sun D, Zhang WJ, Chen GX (2012) A strategy to functionalize the carbon nanotubes and the nanocomposites based on poly(L-lactide). Ind Eng Chem Res 51:13648–13654

    Article  CAS  Google Scholar 

  14. Kim HS, Park BH, Yoon JS, Jin HJ (2007) Thermal and electrical properties of poly(L-lactide)-graft-multiwalled carbon nanotube composites. Eur Polym J 43:1729–1735

    Article  CAS  Google Scholar 

  15. Eitan A, Jiang KY, Dukes D, Andrews R, Schadler LS (2003) Surface modification of multiwalled carbon nanotubes: toward the tailoring of the interface in polymer composites. Chem Mater 15:3198–3201

    Article  CAS  Google Scholar 

  16. Clark MD, Subramanian S, Krishnamoorti R (2011) Understanding surfactant aided aqueous dispersion of multi-walled carbon nanotubes. J Colloid Interface Sci 354:144–151

    Article  CAS  Google Scholar 

  17. Hu H, Yu B, Ye Q, Gu Y, Zhou F (2010) Modification of carbon nanotubes with a nanothin polydopamine layer and polydimethylamino-ethyl methacrylate brushes. Carbon 48:2347–2353

    Article  CAS  Google Scholar 

  18. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430

    Article  CAS  Google Scholar 

  19. Lynge ME, van der Westen R, Postma A, Stadler B (2011) Polydopamine-a nature-inspired polymer coating for biomedical science. Nanoscale 3:4916–4928

    Article  CAS  Google Scholar 

  20. Wei Y, Kong J, Yang L, Ke L, Tan HR, Liu H, Huang Y, Sun XW, Lu X, Du H (2013) Polydopamine-assisted decoration of ZnO nanorods with Ag nanoparticles: an improved photoelectrochemical anode. J. Mater Chem A 1:5045–5052

    Article  CAS  Google Scholar 

  21. Shi C, Deng C, Zhang X, Yang P (2013) Synthesis of highly water-dispersible polydopamine-modified multiwalled carbon nanotubes for matrix-assisted laser desorption/ionization mass spectrometry analysis. ACS Appl Mater Interfaces 5:7770–7776

    Article  CAS  Google Scholar 

  22. Podsiadlo P, Liu ZQ, Paterson D, Messersmith PB, Kotov NA (2007) Fusion of seashell nacre and marine bioadhesive analogs: high-strength nanocompoisite by layer-by-layer assembly of clay and L-3,4-dihydroxyphenylaianine polymer. Adv Mater 19:949–955

    Article  CAS  Google Scholar 

  23. Yang LP, Yee WA, Phua SL, Kong JH, Ding H, Cheah JW, Lu XH (2012) A high throughput method for preparation of highly conductive functionalized graphene and conductive polymer nanocomposites. Rsc Adv 2:2208–2210

    Article  CAS  Google Scholar 

  24. Yang L, Phua SL, Teo JKH, Toh CL, Lau SK, Ma J, Lu X (2011) A biomimetic approach to enhancing interfacial interactions: polydopamine-coated clay as reinforcement for epoxy resin. ACS Appl Mater Interfaces 3:3026–3032

    Article  CAS  Google Scholar 

  25. Zhou M, Li Y, He C, Jin T, Wang K, Fu Q (2014) Interfacial crystallization enhanced interfacial interaction of Poly (butylene succinate)/ramie fiber biocomposites using dopamine as a modifier. Compos Sci Technol 91:22–29

    Article  CAS  Google Scholar 

  26. Liu XC, Wang GC, Liang RP, Shi L, Qiu JD (2013) Environment-friendly facile synthesis of Pt nanoparticles supported on polydopamine modified carbon materials. J Mater Chem A 1:3945–3953

    Article  CAS  Google Scholar 

  27. Fei B, Qian B, Yang Z, Wang R, Liu WC, Mak CL, Xin JH (2008) Coating carbon nanotubes by spontaneous oxidative polymerization of dopamine. Carbon 46:1795–1797

    Article  CAS  Google Scholar 

  28. Peponi L, Navarro-Baena I, Baez JE, Kenny JM, Marcos-Fernandez A (2012) Effect of the molecular weight on the crystallinity of PCL-b-PLLA di-block copolymers. Polymer 53:4561–4568

    Article  CAS  Google Scholar 

  29. Lizundia E, Sarasua JR, D’Angelo F, Orlacchio A, Martino S, Kenny JM, Armentano I (2012) Biocompatible poly(L-lactide)/MWCNT nanocomposites: morphological characterization, electrical properties, and stem cell interaction. Macromol Biosci 12:870–881

    Article  CAS  Google Scholar 

  30. Milliman HW, Ishida H, Schiraldi DA (2012) Structure property relationships and the role of processing in the reinforcement of nylon 6-POSS blends. Macromolecules 45:4650–4657

    Article  CAS  Google Scholar 

  31. Papageorgiou GZ, Achilias DS, Nanaki S, Beslikas T, Bikiaris D (2010) PLA nanocomposites: effect of filler type on non-isothermal crystallization. Thermochim Acta 511:129–139

    Article  CAS  Google Scholar 

  32. Yang JH, Lin SH, Lee YD (2012) Preparation and characterization of poly(L-lactide)-graphene composites using the in situ ring-opening polymerization of PLLA with graphene as the initiator. J Mater Chem 22:10805–10815

    Article  CAS  Google Scholar 

  33. Chen PP, Wang Y, Wei T, Meng Z, Jia XD, Xi K (2013) Greatly enhanced mechanical properties and heat distortion resistance of poly(L-lactic acid) upon compositing with functionalized reduced graphene oxide. J Mater Chem A 1:9028–9032

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (21072221, 21172252). Supports from Dr. Shen Yan, National Center for Nanoscience and Technology (100190, Beijing, China) for electrical conductivity test are also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wu, C., Liu, X. et al. Enhanced mechanical and thermal properties of poly(l-lactide) nanocomposites assisted by polydopamine-coated multiwalled carbon nanotubes. Colloid Polym Sci 292, 2949–2957 (2014). https://doi.org/10.1007/s00396-014-3350-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3350-5

Keywords

Navigation