Skip to main content
Log in

pH-responsive pseudorotaxane between comblike PEO-grafted triblock polymer and α-cyclodextrin

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The pH-responsive inclusion complexation of comblike triblock polymer, P2VP-b-PPEOMA-b-P2VP, with α-cyclodextrin (α-CD) was studied. The triblock polymer was prepared by reversible addition–fragmentation chain transfer polymerization (RAFT) and formed inclusion complexes (ICs) after selective threading of the PEO segment of the triblock polymer through the cavities of α-CD units. For comparison, PPEOMA homopolymer was prepared, and the inclusion complexation with α-CD was also studied. The formed ICs were characterized by XRD and 1H NMR. The results revealed that P2VP-b-PPEOMA-b-P2VP can form ICs with α-CD even when forming micelles, and the introduction of P2VP had a great influence on the solution property and the stoichiometry of EO to CD of the inclusion complexes depending on the concentration and the pH of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu J, Sondjaja HR, Tam KC (2007) α-Cyclodextrin-induced self-assembly of a double-hydrophilic block copolymer in aqueous solution. Langmuir 23:5106–5109

    Article  CAS  Google Scholar 

  2. Loethen S, Kim J, Thompson DH (2007) Biomedical applications of cyclodextrin based polyrotaxanes. Polym Rev 47:383–418

    Article  CAS  Google Scholar 

  3. Ishiwata S, Kamiya M (2000) Structural study on inclusion complexes of cyclodextrins with organophosphorus pesticides by use of rotational strength analysis method. Chemosphere 41:701–704

    Article  CAS  Google Scholar 

  4. Duchane D, Wouessidjewe D (1990) Pharmaceutical uses of cyclodextrins and derivatives. Drug Dev Ind Pharm 16:2487–2499

    Article  Google Scholar 

  5. Zhu W, Li YL, Liu LX, Chen YM, Wang C, Xi F (2010) Supramolecular hydrogels from cisplatin-loaded block copolymer nanoparticles and α-cyclodextrins with a stepwise delivery property. Biomacromolecules 11:3086–3092

    Article  CAS  Google Scholar 

  6. Challa R, Ahuja A, Ali J, Khar RK (2005) Cyclodextrins in drug delivery: an updated review. Aaps Pharmscitech 6:E329–E357

    Article  Google Scholar 

  7. He LH, Huang J, Chen YM, Liu LP (2005) Inclusion complexation between comblike PEO grafted polymers and α-cyclodextrin. Macromolecules 38:3351–3355

    Article  CAS  Google Scholar 

  8. Harada A, Kamachi M (1990) Complex formation between poly(ethy1ene glycol) and a-cyclodextrin. Macromolecules 23:2821–2823

    Article  CAS  Google Scholar 

  9. He LH, Huang J, Chen YM, Xu XJ, Liu LP (2005) Inclusion interaction of highly densely PEO grafted polymer brush and α-cyclodextrin. Macromolecules 38:3845–3851

    Article  CAS  Google Scholar 

  10. Huh KM, Ooya T, Lee WK, Sasaki S, Yui N et al (2001) Supramolecular-structured hydrogels showing a reversible phase transition by inclusion complexation between poly(ethylene glycol) grafted dextran and α-cyclodextrin. Macromolecules 34:8657–8662

    Article  CAS  Google Scholar 

  11. Ren LX, He LH, Sun TC, Dong X, Chen YM, Huang J, Wang C (2009) Dual-responsive supramolecular hydrogels from water-soluble PEG-grafted copolymers and cyclodextrin. Macromol Biosci 9:902–910

    Article  CAS  Google Scholar 

  12. Chan SC, Kuo SW, Chang FC (2005) Synthesis of the organic/inorganic hybrid star polymers and their inclusion complexes with cyclodextrins. Macromolecules 38:3099–3107

    Article  CAS  Google Scholar 

  13. Sabadini E, Cosgrove T (2003) Inclusion complex formed between star-poly(ethylene glycol) and cyclodextrins. Langmuir 19:9680–9683

    Article  CAS  Google Scholar 

  14. Zhu XY, Chen L, Yan DY, Chen Q, Yao YF, Xiao Y, Hou J, Li JY (2004) Supramolecular self-assembly of inclusion complexes of a multiarm hyperbranched polyether with cyclodextrins. Langmuir 20:484–490

    Article  Google Scholar 

  15. Jiao H, Goh SH, Valiyaveettil S (2002) Inclusion complexes of multiarm poly(ethylene glycol) with cyclodextrins. Macromolecules 35:1980–1983

    Article  CAS  Google Scholar 

  16. Huang J, Ren LX, Zhu H, Chen YM (2006) Hydrophilic block copolymer aggregation in solution induced by selective threading of cyclodextrins. Macromol Chem Phys 207:1764–1772

    Article  CAS  Google Scholar 

  17. Harada A, Li J, Kamachi M (1992) The molecular necklace: a rotaxane containing many threaded α-cyclodextrins. Nature 356:325–327

    Article  CAS  Google Scholar 

  18. Harada A (2001) Cyclodextrin-based molecular machines. Acc Chem Res 34:456–464

    Article  CAS  Google Scholar 

  19. Huang FH, Gibson HW (2005) Polypseudorotaxanes and polyrotaxanes. Prog Polym Sci 30:982–1018

    Article  CAS  Google Scholar 

  20. Araki J, Ito K (2007) Recent advances in the preparation of cyclodextrin-based polyrotaxanes and their applications to soft materials. Soft Matter 3:1456–1473

    Article  CAS  Google Scholar 

  21. Frampton MJ, Anderson HL (2007) Insulated molecular wires. Angew Chem Int Ed 46:1028–1064

    Article  CAS  Google Scholar 

  22. Karino T, Okumura Y, Zhao C, Kidowaki M, Kataoka T, Ito K, Shibayama M (2006) Sol-gel transition of hydrophobically modified polyrotaxane. Macromolecules 39:9435–9440

    Article  CAS  Google Scholar 

  23. Shigekawa H, Miyake K, Sumaoka J, Harada A, Komiyama M (2000) The molecular abacus: STM manipulation of cyclodextrin necklace. J Am Chem Soc 122:5411–5412

    Article  CAS  Google Scholar 

  24. Tu CW, Kuo SW, Chang FC (2009) Supramolecular self-assembly through inclusion complex formation between poly(ethylene oxide-b-N-isopropyl-acrylamide) block copolymer and α-cyclodextrin. Polymer 50:2958–2966

    Article  CAS  Google Scholar 

  25. Li J, Harada A, Kamachi M (1994) Sol-gel transition during inclusion complex formation between α-cyclodextrin and high molecular weight poly(ethylene glycol)s in aqueous solution. Polym J 26:1019–1026

    Article  CAS  Google Scholar 

  26. Liu Y, Zhao DY, Ma RJ, Xiong DA, An YL, Shi LQ (2009) Chaperone-like α-cyclodextrins assisted self-assembly of double hydrophilic block copolymers in aqueous medium. Polymer 50:855–859

    Article  CAS  Google Scholar 

  27. Borchert U, Lipprandt U, Bilang M et al (2006) pH-induced release from P2VP-PEO block copolymer vesicles. Langmuir 22:5843–5847

    Article  CAS  Google Scholar 

  28. Lai JT, Filla D, Shea R (2002) Functional polymers from novel carboxyl-terminate trithiocarbonates as highly efficient RAFT agents. Macromolecules 35:6754–6756

    Article  CAS  Google Scholar 

  29. Jiang L, Gao ZM, Ye L, Zhang AY, Feng ZG (2013) A tumor-targeting nano doxorubicin delivery system built from amphiphilic polyrotaxane-based block copolymers. Polymer 54:5188–5198

    Article  CAS  Google Scholar 

  30. Yang YQ, Lin WJ, Zhao B, Wen XF, Guo XD, Zhang LJ (2012) Synthesis and physicochemical characterization of amphiphilic triblock copolymer brush containing pH-sensitive linkage for oral drug delivery. Langmuir 28:8251–8259

    Article  CAS  Google Scholar 

  31. Gan YC, Yuan JF, Liu XJ, Wang P, Gao QY (2011) ABC triblock copolymers with pH-responsive LCST for controlled drug delivery. J Bioact Compat Polym 26:173–190

    Article  CAS  Google Scholar 

  32. Zhang LF, Cheng ZP, Zhou NC, Shi SP, Su XR, Zhu XL (2009) Synthesis of miktoarm dumbbell-like amphiphilic triblock copolymer by combination of consecutive RAFT polymerizations and ATRP. Polym Bull 62:11–22

    Article  CAS  Google Scholar 

  33. Quirk RP, Corona-Galvan S (2001) Controlled anionic synthesis of polyisoprene poly(2-vinylpyridine) diblock copolymers in hydrocarbon solution. Macromolecules 34:1192–1197

    Article  CAS  Google Scholar 

  34. Holder SJ, Rossi NAA, Yeoh CT, Durand GG, Boerakkerb MJ, Sommerdijk N (2003) ABA triblock copolymers: from controlled synthesis to controlled function. J Mater Chem 13:2771–2778

    Article  CAS  Google Scholar 

  35. Bes L, Angot S, Limer A, Haddleton DM (2003) Sugar-coated amphiphilic block copolymer micelles from living radical polymerization: recognition by immobilized lectins. Macromolecules 36:2493–2499

    Article  CAS  Google Scholar 

  36. Chen YW, Wang WC, Yu WH et al (2004) Ultra-low-k materials based on nanoporous fluorinated polyimide with well-defined pores via the RAFT-moderated graft polymerization process. J Mater Chem 14:1406–1412

    Article  CAS  Google Scholar 

  37. Li J, Li X, Zhou Z et al (2001) Formation of supramolecular hydrogels induced by inclusion complexation between pluronics and α-cyclodextrin. Macromolecules 34:7236–7237

    Article  CAS  Google Scholar 

  38. Sabadini E, Cosgrove T, Taweepreda W (2003) Complexation between alpha-cyclodextrin and poly(ethylene oxide) physically adsorbed on the surface of colloidal silica. Langmuir 19:4812–4816

    Article  CAS  Google Scholar 

  39. Harada A, Li J, Kamachi M (1993) Preparation and properties of inclusion complexes of poly(ethy1ene glycol) with a-cyclodextrin. Macromolecules 26:5698–5703

    Article  CAS  Google Scholar 

  40. Symons MCR, Benbow JA, Harvey JM (1980) Hydroxyl-proton resonance shifts for a range of aqueous sugar solutions. Carbohydr Res 83:9–20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Hunan Normal University for providing start-up funds. We thank Dr. Zisheng Chao for giving support for the XRD experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Xiao, J., Wang, X. et al. pH-responsive pseudorotaxane between comblike PEO-grafted triblock polymer and α-cyclodextrin. Colloid Polym Sci 292, 3243–3249 (2014). https://doi.org/10.1007/s00396-014-3265-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3265-1

Keywords

Navigation