Skip to main content
Log in

Investigation of the factors affecting the carbohydrate–lectin interaction by ITC and QCM-D

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Although the carbohydrate–lectin interactions have been intensively investigated, there is little report concerning the factors that affect the carbohydrate–lectin interaction. The interactions between concanavalin A (Con A) and glycopolymers, namely poly(2-(methacrylamido)-glucopyranose) and poly(2-methacrylamido-2-deoxy-glucitol) containing pyranose ring form and open form of glucosamine, respectively, have been investigated by a combination of isothermal titration calorimetry and quartz crystal microbalance-dissipation. Our results show that not only the pyranose ring form of glucosamine but also the open form can bind to Con A. Moreover, we investigate the influence of temperature on the carbohydrate–lectin interaction. As the temperature increases, the carbohydrate–lectin interaction is enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mammen M, Choi SK, Whitesides GM (1998) Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 37:2755–2794

    Article  CAS  Google Scholar 

  2. Sacchettini JC, Baum LG, Brewer CF (2001) Multivalent protein-carbohydrate interactions. A new paradigm for supermolecular assembly and signal transduction. Biochemistry 40:3009–3015

    Article  CAS  Google Scholar 

  3. Bertozzi CR, Kiessling LL (2001) Chemical glycobiology. Science 291:2357–2364

    Article  CAS  Google Scholar 

  4. Kiessling LL, Gestwicki JE, Strong LE (2006) Synthetic multivalent ligands as probes of signal transduction. Angew Chem Int Ed 45:2348–2368

    Article  CAS  Google Scholar 

  5. Yamazaki N, Kojima S, Bovin NV, Andre S, Gabius S, Gabius HJ (2000) Endogenous lectins as targets for drug delivery. Adv Drug Deliv Rev 43:225–244

    Article  CAS  Google Scholar 

  6. Liu S, Maheshwari R, Kiick KL (2009) Polymer-based therapeutics. Macromolecules 42:3–13

    Article  CAS  Google Scholar 

  7. Lee YC, Lee RT (1995) Carbohydrate-protein interactions: basis of glycobiology. Acc Chem Res 28:321

    Article  CAS  Google Scholar 

  8. Dimick SM, Powell SC, McMahon SA, Moothoo DN, Naismith JH, Toone EJ (1999) On the meaning of affinity: cluster glycoside effects and concanavalin A. J Am Chem Soc 121:10286–10296

    Article  CAS  Google Scholar 

  9. Lundquist JJ, Toone EJ (2002) The cluster glycoside effect. Chem Rev 102:555–578

    Article  CAS  Google Scholar 

  10. Miura Y (2007) Synthesis and biological application of glycopolymers. J Polym Sci A Polym Chem 45:5031–5036

    Article  CAS  Google Scholar 

  11. Okada M (2001) Molecular design and syntheses of glycopolymers. Prog Polym Sci 26:67–104

    Article  CAS  Google Scholar 

  12. Voit B, Appelhans D (2010) Glycopolymers of various architectures—more than mimicking nature. Macromol Chem Phys 211:727–735

    Article  CAS  Google Scholar 

  13. Wang Q, Dordick JS, Linhardt RJ (2002) Synthesis and application of carbohydrate-containing polymers. Chem Mater 14:3232–3244

    Article  CAS  Google Scholar 

  14. Ladmiral V, Melia E, Haddleton DM (2004) Synthetic glycopolymers: an overview. Eur Polym J 40:431–449

    Article  CAS  Google Scholar 

  15. Ting SRS, Chen G, Stenzel MH (2010) Synthesis of glycopolymers and their multivalent recognitions with lectins. Polym Chem 1:1392–1412

    Article  CAS  Google Scholar 

  16. Miura Y (2012) Design and synthesis of well-defined glycopolymers for the control of biological functionalities. Polym J 44:679–689

    Article  CAS  Google Scholar 

  17. Spain SG, Cameron NR (2011) A spoonful of sugar: the application of glycopolymers in therapeutics. Polym Chem 2:60–68

    Article  CAS  Google Scholar 

  18. Zhang Y, Luo SZ, Tang YJ, Yu L, Hou KY, Cheng JP, Zeng XQ, Wang PG (2006) Carbohydrate-protein interactions by “clicked” carbohydrate self-assembled monolayers. Anal Chem 78:2001–2008

    Article  CAS  Google Scholar 

  19. Dam TK, Brewer CF (2002) Thermodynamic studies of lectin-carbohydrate interactions by isothermal titration calorimetry. Chem Rev 102:387–429

    Article  CAS  Google Scholar 

  20. Mann DA, Kanai M, Maly DJ, Kiessling LL (1998) Probing low affinity and multivalent interactions with surface plasmon resonance: ligands for concanavalin A. J Am Chem Soc 120:10575–10582

    Article  CAS  Google Scholar 

  21. Spain SG, Cameron NR (2011) The binding of polyvalent galactosides to the lectin Ricinus communis agglutinin 120 (RCA(120)): an ITC and SPR study. Polym Chem 2:1552–1560

    Article  CAS  Google Scholar 

  22. Gou Y, Richards S-J, Haddleton DM, Gibson MI (2012) Investigation of glycopolymer-lectin interactions using QCM-D: comparison of surface binding with inhibitory activity. Polym Chem 3:1634–1640

    Article  CAS  Google Scholar 

  23. Ting SRS, Min EH, Zetterlund PB, Stenzel MH (2010) Controlled/living ab initio emulsion polymerization via a glucose RAFTstab: degradable cross-linked glyco-particles for concanavalin A/FimH conjugations to cluster E. coli bacteria. Macromolecules 43:5211–5221

    Article  CAS  Google Scholar 

  24. Pearson S, Allen N, Stenzel MH (2009) Core-shell particles with glycopolymer shell and polynucleoside core via RAFT: from micelles to rods. J Polym Sci A Polym Chem 47:1706–1723

    Article  CAS  Google Scholar 

  25. Goldstein IJ, Hayes CE (1978) The lectins: carbohydrate-binding proteins of plants and animals. Adv Carbohydr Chem Biochem 35:127–340

    Article  CAS  Google Scholar 

  26. Goldstein IJ, Hollerman CE, Smith EE (1965) Protein-carbohydrate interaction. II. Inhibition studies on the interaction of concanavalin A with polysaccharides. Biochemistry 4:876–883

    Article  CAS  Google Scholar 

  27. Chen G, Amajjahe S, Stenzel MH (2009) Synthesis of thiol-linked neoglycopolymers and thermo-responsive glycomicelles as potential drug carrier. Chem Commun 1198–1200

  28. Yang Q, Wu J, Li J-J, Hu M-X, Xu Z-K (2006) Nanofibrous sugar sticks electrospun from glycopolymers for protein separation via molecular recognition. Macromol Rapid Commun 27:1942–1948

    Article  CAS  Google Scholar 

  29. Dai X-H, Dong C-M (2008) Synthesis, self-assembly and recognition properties of biomimetic star-shaped poly(epsilon-caprolactone)-b-glycopolymer block copolymers. J Polym Sci A Polym Chem 46:817–829

    Article  CAS  Google Scholar 

  30. Dai X-H, Dong C-M, Yan D (2008) Supramolecular and biomimetic polypseudorotaxane/glycopolymer biohybrids: synthesis, glucose-surfaced nanoparticles, and recognition with lectin. J Phys Chem B 112:3644–3652

    Article  CAS  Google Scholar 

  31. Dai X-H, Zhang H-D, Dong C-M (2009) Fabrication, biomolecular binding, in vitro drug release behavior of sugar-installed nanoparticles from star poly(epsilon-caprolactone)/glycopolymer biohybrid with a dendrimer core. Polymer 50:4626–4634

    Article  CAS  Google Scholar 

  32. Mateescu A, Ye J, Narain R, Vamvakaki M (2009) Synthesis and characterization of novel glycosurfaces by ATRP. Soft Matter 5:1621–1629

    Article  CAS  Google Scholar 

  33. Klein E, Ferrand Y, Barwell NP, Davis AP (2008) Solvent effects in carbohydrate binding by synthetic receptors: implications for the role of water in natural carbohydrate recognition. Angew Chem Int Ed 47:2693–2696

    Article  CAS  Google Scholar 

  34. Mangold SL, Cloninger MJ (2006) Binding of monomeric and dimeric concanavalin A to mannose-functionalized dendrimers. Org Biomol Chem 4:2458–2465

    Article  CAS  Google Scholar 

  35. Zhang G, Wu C (2009) Quartz crystal microbalance studies on conformational change of polymer chains at interface. Macromol Rapid Commun 30:328–335

    Article  Google Scholar 

  36. Ambrosi M, Cameron NR, Davis BG (2005) Lectins: tools for the molecular understanding of the glycocode. Org Biomol Chem 3:1593–1608

    Article  CAS  Google Scholar 

  37. Elgavish S, Shaanan B (1997) Lectin-carbohydrate interactions: different folds, common recognition principles. Trends Biochem Sci 22:462–467

    Article  CAS  Google Scholar 

  38. Ambrosi M, Cameron NR, Davis BG, Stolnik S (2005) Investigation of the interaction between peanut agglutinin and synthetic glycopolymeric multivalent ligands. Org Biomol Chem 3:1476–1480

    Article  CAS  Google Scholar 

  39. Kitov PI, Bundle DR (2003) On the nature of the multivalency effect: a thermodynamic model. J Am Chem Soc 125:16271–16284

    Article  CAS  Google Scholar 

  40. Li Z, Lazaridis T (2005) The effect of water displacement on binding thermodynamics: concanavalin A. J Phys Chem B 109:662–670

    Article  CAS  Google Scholar 

  41. Yang Q, Hu M-X, Dai Z-W, Tian J, Xu Z-K (2006) Fabrication of glycosylated surface on polymer membrane by UV-induced graft polymerization for lectin recognition. Langmuir 22:9345–9349

    Article  CAS  Google Scholar 

  42. Wolfrom ML, Anno K (1952) Sodium borohydride as a reducing agent in the sugar series. J Am Chem Soc 74:5583–5584

    Article  CAS  Google Scholar 

  43. Wulff G, Schmid J, Venhoff T (1996) The synthesis of polymerizable vinyl sugars. Macromol Chem Phys 197:259–274

    Article  CAS  Google Scholar 

  44. Quiocho FA (1989) Protein-carbohydrate interactions: basic molecular features. Pure Appl Chem 61:1293–1306

    Article  CAS  Google Scholar 

  45. Willcock H, O'Reilly RK (2010) End group removal and modification of RAFT polymers. Polym Chem 1:149–157

    Article  CAS  Google Scholar 

  46. Boca SC, Astilean S (2010) Detoxification of gold nanorods by conjugation with thiolated poly(ethylene glycol) and their assessment as SERS-active carriers of Raman tags. Nanotechnology 21

  47. Wang J, Liu D, Wang Z (2011) Synthesis and cell-surface binding of lectin-gold nanoparticle conjugates. Anal Methods 3:1745–1751

    Article  CAS  Google Scholar 

  48. Tang YJ, Mernaugh R, Zeng XQ (2006) Nonregeneration protocol for surface plasmon resonance: study of high-affinity interaction with high-density biosensors. Anal Chem 78:1841–1848

    Article  CAS  Google Scholar 

  49. Wegner GJ, Lee HJ, Corn RM (2002) Characterization and optimization of peptide arrays for the study of epitope-antibody interactions using surface plasmon resonance imaging. Anal Chem 74:5161–5168

    Article  CAS  Google Scholar 

  50. Huang M, Shen Z, Zhang Y, Zeng X, Wang PG (2007) Alkanethiol containing glycopolymers: a tool for the detection of lectin binding. Bioorg Med Chem Lett 17:5379–5383

    Article  CAS  Google Scholar 

  51. Gou Y, Slavin S, Geng J, Voorhaar L, Haddleton DM, Becer CR (2012) Controlled alternate layer-by-layer assembly of lectins and glycopolymers using QCM-D. Acs Macro Lett 1:180–183

    Article  CAS  Google Scholar 

  52. Hoshino Y, Nakamoto M, Miura Y (2012) Control of protein-binding kinetics on synthetic polymer nanoparticles by tuning flexibility and inducing conformation changes of polymer chains. J Am Chem Soc 134:15209–15212

    Article  CAS  Google Scholar 

  53. Chen S, Li L, Zhao C, Zheng J (2010) Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymer 51:5283–5293

    Article  CAS  Google Scholar 

  54. Cheng H, Shen L, Wu C (2006) LLS and FTIR studies on the hysteresis in association and dissociation of poly(N-isopropylacrylamide) chains in water. Macromolecules 39:2325–2329

    Article  CAS  Google Scholar 

  55. Lutz JF, Akdemir O, Hoth A (2006) Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: is the age of PNIPAM over. J Am Chem Soc 128:13046–13047

    Article  CAS  Google Scholar 

  56. Zhang GZ (2004) Study on conformation change of thermally sensitive linear grafted poly(N-isopropylacrylamide) chains by quartz crystal microbalance. Macromolecules 37:6553–6557

    Article  CAS  Google Scholar 

  57. Vyas NK, Vyas MN, Chervenak MC, Johnson MA, Pinto BM, Bundle DR, Quiocho FA (2002) Molecular recognition of oligosaccharide epitopes by a monoclonal fab specific for Shigella flexneri Y lipopolysaccharide: X-ray structures and thermodynamics. Biochemistry 41:13575–13586

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of this work by the National Natural Science Foundation of China (21104020, 21004042), the Fundamental Research Funds for the Central Universities, and the Hong Kong Special Administration Region General Research Fund (CUHK403210, 2130237) is greatly appreciated. The authors thank Professor Songqing Hu and Ms. Tingting Zhang for their help in ITC experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liangzhi Hong or To Ngai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Chen, G., Lu, J. et al. Investigation of the factors affecting the carbohydrate–lectin interaction by ITC and QCM-D. Colloid Polym Sci 292, 391–398 (2014). https://doi.org/10.1007/s00396-013-3080-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-3080-0

Keywords

Navigation