Skip to main content
Log in

Ag/DNQ-novolac-based nanocomposite films for controllable UV lithography morphological patterning

  • Invited Review
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this study, the detailed characterisation of silver (Ag) nanoparticles/polymer nanocomposite chemical structure and morphology of grating has been carried out. Scanning electron microscopy measurements show spherical shape of Ag nanoparticles (40–80 nm in diameter) prepared in chloroform by reduction of silver nitrate. In the positive photoresist based on 2-diazo-2H-naphthalen-1-one (DNQ)–novolac, Ag nanoparticles were deposited from organic colloidal solution. The content of nanoparticles in the polymer matrix was varied by increasing the concentration of Ag colloidal solution. Grating was formed by contact lithography. The quantification of Ag nanoparticles and chemical analysis of Ag/DNQ-novolac-based nanocomposite was performed by means of energy dispersive X-ray analyzer and SEM/EDS. In order to study the effect of Ag nanoparticles on the DNQ-novolac-based nanocomposite structure, investigations with Fourier transform infrared spectroscopy were conducted. Ag nanoparticles cause changes associated with substituent-sensitive out-of-plane C–H bending vibrations of aromatic ring. Ag/DNQ-novolac-based nanocomposite film surface morphology and grating topography imaging were performed using atomic force microscopy. Added Ag nanoparticles change the geometrical parameters of the gratings. The split of corrugations was achieved in Ag/DNQ-novolac-patterned films. Their morphology can be tailored by altering the content of Ag nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mucic RC, Storhoff JJ, Mirkin CA, Letsinger RL (1998) DNA-directed synthesis of binary nanoparticle network materials. J Am Chem Soc 120:12674–12675

    Article  CAS  Google Scholar 

  2. Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46

    Article  CAS  Google Scholar 

  3. McFarland AD, Van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3:1057–1062

    Article  CAS  Google Scholar 

  4. Hicks EM, Zhang X, Zou S, Lyandres O, Spears KG, Schatz GC, Van Duyne RP (2005) Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithography. J Phys Chem B 109:22351–22358

    Article  CAS  Google Scholar 

  5. Yonzon CR, Jeoung E, Zou S, Schatz GC, Mrksich M, Van Duyne RP (2004) A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of concanavalin A to a monosaccharide functionalized self-assembled monolayer. J Am Chem Soc 126:12669–12676

    Article  CAS  Google Scholar 

  6. Zhang X, Young MA, Lyandres O, Van Duyne RP (2005) Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J Am Chem Soc 127:4484–4489

    Article  CAS  Google Scholar 

  7. Haes AJ, Van Duyne RP (2002) A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124:10596–10604

    Article  CAS  Google Scholar 

  8. Henzie J, Lee J, Lee MH, Hasan W, Odom TW (2009) Nanofabrication of plasmonic structures. Annu Rev Phys Chem 60:147–165

    Article  CAS  Google Scholar 

  9. Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111(10):3606–3619

    Article  Google Scholar 

  10. Lukman AI, Gong B, Marjo CE, Roessner U, Harris AT (2011) Facile synthesis, stabilization, and antibacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. J Colloid Interface Sci 353:433–444

    Article  CAS  Google Scholar 

  11. Nemanashi M, Meijboom R (2013) Synthesis and characterization of Cu, Ag, and Au dendrimer-encapsulated nanoparticles and their application in the reduction of 4-nitrophenol to 4-aminophenol. J Colloid Interface Sci 389:260–267

    Article  CAS  Google Scholar 

  12. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  13. Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4:310–325

    Article  CAS  Google Scholar 

  14. Stevanović M, Savanović I, Uskoković V, Škapin SD, Bračko I, Jovanović U, Uskoković D (2012) A new, simple, green, and one-pot four-component synthesis of bare and poly(α, γ, l-glutamic acid)-capped silver nanoparticles. Colloid Polym Sci 290(3):221–231

    Article  Google Scholar 

  15. Cobley CM, Skrabalak SE, Campbell DJ, Xia Y (2009) Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications. Plasmonics 4:171–179

    Article  CAS  Google Scholar 

  16. Urrutia A, Rivero PJ, Ruete L, Goicoechea J, Matías IR, Arregui FJ (2012) Single-stage in situ synthesis of silver nanoparticles in antibacterial self-assembled overlays. Colloid Polym Sci 290(9):785–792

    CAS  Google Scholar 

  17. Jiang X, Chen W, Chen C, Xiong S, Yu A (2011) Role of temperature in the growth of silver nanoparticles through a synergetic reduction approach. Nanoscale Res Lett 6:32–40

    Google Scholar 

  18. Noritomi H, Igari N, Kagitani K, Umezawa Y, Muratsubaki Y, Kato S (2010) Synthesis and size control of silver nanoparticles using reverse micelles of sucrose fatty acid esters. Colloid Polym Sci 288(8):887–891

    Article  CAS  Google Scholar 

  19. Vukoje I, Božanić D, Džunuzović J, Bogdanović U, Vodnik V (2012) Surface plasmon resonance of Ag organosols: experimental and theoretical investigations. Hemind 66(6):805–812

    CAS  Google Scholar 

  20. Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800

    Article  CAS  Google Scholar 

  21. Patel K, Kapoor S, Dave D, Mukherjee T (2005) Synthesis of nanosized silver colloids by microwave dielectric heating. J Chem Sci 117:53–60

    Article  CAS  Google Scholar 

  22. Rosarin F, Mirunalini S (2011) Nobel metallic nanoparticles with novel biomedical properties. J Bioanal Biomed 3:085–091

    Article  Google Scholar 

  23. Marqués-Hueso J, Abargues R, Valdés JL, Martínez-Pastor JP (2010) Ag and Au/DNQ-novolac nanocomposites patternable by ultraviolet lithography: a fast route to plasmonic sensor microfabrication. J Mater Chem 20:7436–7443

    Article  Google Scholar 

  24. Pudlauskaitė J, Prosyčevas I, Jankauskaitė V, Kleveckas T (2012) Photoresist modification by silver colloidal solution: the role of silver nanoparticles content. Proc Est Acad Sci 61:212–219

    Article  Google Scholar 

  25. Lazauskas A, Grigaliūnas V (2012) Float Glass Surface Preparation Methods for Improved Chromium Film Adhesive Bonding. Mater Sci Medzg 18:181–186

    Google Scholar 

  26. Stalder A, Kulik G, Sage D, Barbieri L, Hoffmann P (2006) A snake-based approach to accurate determination of both contact points and contact angles. Colloids Surf A 286:92–103

    Article  CAS  Google Scholar 

  27. Tayebi N, Polycarpou A (2006) Adhesion and contact modeling and experiments in microelectromechanical systems including roughness effects. Microsyst Technol 12:854–869

    Article  CAS  Google Scholar 

  28. Puchalski M, Dąbrowski P, Olejniczak W, Krukowski P, Kowalczyk P, Polański K (2007) The study of silver nanoparticles by scanning electron microscopy, energy dispersive X-ray analysis, and scanning tunneling microscopy. Mater Sci Pol 25:473–478

    CAS  Google Scholar 

  29. Soengas RG, Estévez JC, Estévez RJ (2003) Total synthesis of 3, 4-dihydroxyprolines, d-threo-l-norvaline and (2S,3R,4R)-2-amino-3,4-dihydroxytetrahydrofuran-2-carboxylic acid methyl ester. Tetrahedron Asymmetry 14:3955–3963

    Article  CAS  Google Scholar 

  30. Pareek AK, Joseph P, Seth DS (2009) A facile synthesis, characterization, and spectral studies of new substituted phenyl malonamic acid hydrazides and their acid hydrazones. Orient J Chem 25:159

    CAS  Google Scholar 

  31. Fanta GF, Felker FC, Salch JH (2003) Graft polymerization of acrylonitrile onto starch-coated polyethylene film surfaces. J Appl Polym Sci 89:3323–3328

    Article  CAS  Google Scholar 

  32. Larkin PJ, Makowski MP, Colthup NB, Flood LA (1998) Vibrational analysis of some important group frequencies of melamine derivatives containing methoxymethyl and carbamate substituents: mechanical coupling of substituent vibrations with triazine ring modes. Vibr Spectrosc 17:53–72

    Article  CAS  Google Scholar 

  33. Kawashima H, Goto H (2011) Preparation and properties of polyaniline in the presence of trehalose. Soft Nanosci Lett 1:71–75

    Article  CAS  Google Scholar 

  34. Kolhe P, Misra E, Kannan RM, Kannan S, Lieh-Lai M (2003) Drug complexation, in vitro release, and cellular entry of dendrimers and hyperbranched polymers. Int J Pharm 259:143–160

    Article  CAS  Google Scholar 

  35. Batista LN, Silva VF, Fonseca MG, Pissurno ECG, Daroda RJ, Cunha VS, Kunigami CN, de Santa Maria LC (2013) Easy to use spectrophotometric method for determination of aromatic diamines in biodiesel samples. Microchem J 106:17–22

    Article  CAS  Google Scholar 

  36. Larkin P (2011) Infrared and Raman spectroscopy; principles and spectral interpretation, Elsevier

  37. Rongben WUFSZ, Yingyan J (1990) Synthesis and characterization of B-diketone based side chain liquid crystalline polysiloxanes. Chin J Polym Sci 8:133–141

    Google Scholar 

  38. Bright A, Devi TSR, Gunasekaran S (2010) Spectroscopical vibrational band assignment and qualitative analysis of biomedical compounds with cardiovascular activity. Int J Chem Technol Res 2:379–388

    CAS  Google Scholar 

  39. Chandra H (2007) Characterization of the photosensitive response in polysilane-based organic/inorganic hybrid materials. ProQuest

  40. Roy D, Basu P, Raghunathan P, Eswaran S (2004) Designing of high-resolution photoresists: use of modern NMR techniques for evaluating lithographic performance. Bull Mater Sci 27:303–316

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We want to express our gratitude to Ms Angelė Gudonytė from the Institute of Materials Science of Kaunas University of Technology for her help in performing UV lithography experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jovita Pudlauskaitė.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pudlauskaitė, J., Jankauskaitė, V., Lazauskas, A. et al. Ag/DNQ-novolac-based nanocomposite films for controllable UV lithography morphological patterning. Colloid Polym Sci 291, 1787–1793 (2013). https://doi.org/10.1007/s00396-013-3008-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-3008-8

Keywords

Navigation