Skip to main content
Log in

Impact of surface forces on wetting of hierarchical surfaces and contact angle hysteresis

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The influence of the long-range surface forces on the wetting of multi-scale partially wetted surfaces is discussed. The possibility of partial wetting is stipulated by a specific form of the Derjaguin isotherm. Equilibrium of a liquid meniscus inside a cylindrical capillary is used as a model. The interplay of capillary and disjoining pressures governs the equilibrium of the liquid in the nano- and micrometrically scaled pores constituting the relief of the surface. It is shown that capillaries with a radius smaller than a critical one will be completely filled by water, whereas the larger capillaries will be filled only partially. Thus, small capillaries will show the Wenzel type of wetting behavior, while the same liquid inside the large capillaries will promote the Cassie-Baxter type of wetting. Consideration of disjoining/conjoining pressure allows explaining of the “rose petal effect”, when a high apparent contact angle is accompanied with a high contact angle hysteresis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. de Gennes PG, Brochard-Wyart F, Quéré D (2003) Capillarity and wetting phenomena. Springer, Berlin

    Google Scholar 

  2. Erbil HY (2006) Surface chemistry of solid and liquid interfaces. Blackwell Publishing, Oxford

    Google Scholar 

  3. Barthlott W, Neinhuis C (1997) Planta 202:1

    Article  CAS  Google Scholar 

  4. Shibuichi S, Onda T, Satoh N, Tsujii K (1996) J Phys Chem 100:19512

    Article  CAS  Google Scholar 

  5. Yoshimitsu Z, Nakajima A, Watanabe T, Hashimoto K (2002) Langmuir 18:5818

    Article  CAS  Google Scholar 

  6. Sun T, Wang G, Feng L, Liu B, Ma Y, Jiang L, Zhu D (2004) Angew Chem Int Ed 43:357

    Article  CAS  Google Scholar 

  7. Liu H, Feng L, Zhai J, Jiang L, Zhu D (2004) Langmuir 20:5659

    Article  CAS  Google Scholar 

  8. Jeong HE, Lee SH, Kim JK, Suh KY (2006) Langmuir 22:1640

    Article  CAS  Google Scholar 

  9. Nakajima A, Fujishima A, Hashimoto K, Watanabe T (1999) Adv Mater 11:1365

    Article  CAS  Google Scholar 

  10. Nosonovsky M (2007) Langmuir 23:3157

    Article  CAS  Google Scholar 

  11. Nosonovsky M, Bhushan B (2009) Curr Opin Colloid Interface Sci 14:270

    Article  CAS  Google Scholar 

  12. Marmur A (2003) Langmuir 19:8343–8348

    Article  CAS  Google Scholar 

  13. He B, Lee J, Patankar NA (2004) Colloids Surf A 248:101

    Article  CAS  Google Scholar 

  14. Wenzel RN (1936) Ind Eng Chem 28:988

    Article  CAS  Google Scholar 

  15. Cassie ABD, Baxter S (1944) Trans Faraday Soc 40:546

    Article  CAS  Google Scholar 

  16. Bormashenko E (2009) Colloids Surf A 345:163

    Article  CAS  Google Scholar 

  17. Bormashenko E (2011) J Colloid Interface Sci 360:317–319

    Article  CAS  Google Scholar 

  18. Bico J, Thiele U, Quéré D (2002) Colloids Surf A 206:41

    Article  CAS  Google Scholar 

  19. Larsen ST, Taboryski R (2009) Langmuir 25:1282

    Article  CAS  Google Scholar 

  20. Wong T-S, Ho C-M (2009) Langmuir 25:12851

    Article  CAS  Google Scholar 

  21. Miwa M, Nakajima A, Fujishima A, Hashimoto K, Watanabe T (2000) Langmuir 16:5754

    Article  CAS  Google Scholar 

  22. Whyman G, Bormashenko E (2011) Langmuir 27:8171

    Article  CAS  Google Scholar 

  23. Lafuma A, Quéré D (2003) Nat Mater 2:457

    Article  CAS  Google Scholar 

  24. Verplanck N, Coffinier Y, Thomy V, Boukherroub R (2007) Nanoscale Res Lett 2:577

    Article  CAS  Google Scholar 

  25. Bartolo D, Bouamrirene F, Verneuil E, Buguin A, Silberzan P, Moulinet S (2006) Europhys Lett 74:299

    Article  CAS  Google Scholar 

  26. Nosonovsky M, Bhushan B (2008) Langmuir 24:1525

    Article  CAS  Google Scholar 

  27. Moulinet S, Bartolo D (2007) Eur Phys J E 24:251

    Article  CAS  Google Scholar 

  28. Boreyko J, Chen C (2009) Phys Rev Lett 103:174502

    Article  Google Scholar 

  29. Bormashenko E, Pogreb R, Whyman G, Bormashenko Y, Erlich M (2007) Appl Phys Lett 90:201917

    Article  Google Scholar 

  30. Bormashenko E, Pogreb R, Stein T, Whyman G, Erlich M, Musin A, Machavariani V, Aurbach D (2008) Phys Chem Chem Phys 27:4056

    Article  Google Scholar 

  31. Bormashenko E, Pogreb R, Whyman G, Bormashenko Y, Erlich M (2007) Langmuir 23:6501

    Article  CAS  Google Scholar 

  32. Bormashenko E, Pogreb R, Whyman G, Erlich M (2007) Langmuir 23:12217

    Article  CAS  Google Scholar 

  33. Bormashenko E (2010) Phil Trans R Soc A 368:4695

    Article  CAS  Google Scholar 

  34. Zheng Q-S, Yu Y, Zhao Z-H (2005) Langmuir 21:12207

    Article  CAS  Google Scholar 

  35. Bhushan B, Nosonovsky M (2010) Phil Trans R Soc A 368:4713

    Article  CAS  Google Scholar 

  36. Kietzig A-M, Hatzikiriakos SG, Englezos P (2009) Langmuir 25:4821

    Article  CAS  Google Scholar 

  37. Zorba V, Persano L, Pisignano D, Athanassiou A, Stratakis E, Cingolani R, Tzanetakis P, Fotakis C (2006) Nanotechnology 17:3234

    Article  CAS  Google Scholar 

  38. Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  39. Mate CM (1992) J Appl Phys 72:3084

    Article  CAS  Google Scholar 

  40. Starov V, Velarde M, Radke C (2007) Wetting and spreading dynamics. In: Surfactant Science Series, vol. 138. CRC Press, Boca Raton, FL

  41. Deryaguin BV, Churaev NV, Muller VM (1987) Surface forces. Consultants Bureau, Plenum Press, New York

    Google Scholar 

  42. Derjaguin BV, Kuzakov MM (1936) Izv Akad Nauk SSSR Ser Khim 5:741

    Google Scholar 

  43. Derjaguin BV, Churaev NV (1974) J Colloid Interface Sci 49:249

    Article  Google Scholar 

  44. Starov VM, Velarde MG (2011) J Phys Condens Matter 21:464121

    Article  Google Scholar 

  45. Bormashenko E, Stein T, Whyman G, Bormashenko Y, Pogreb R (2006) Langmuir 22:9982

    Article  CAS  Google Scholar 

  46. Zhao XD, Fan HM, Liu XY, Pan HH, Xu HY (2011) Langmuir 27:3224

    Article  CAS  Google Scholar 

  47. Feng L, Zhang Y, Xi J, Zhu Y, Wang N, Xia F, Jiang L (2008) Langmuir 24:4114

    Article  CAS  Google Scholar 

  48. Bormashenko E, Stein T, Pogreb R, Aurbach D (2009) J Phys Chem C 113:5568

    Article  CAS  Google Scholar 

  49. Nosonovsky M, Hejazi V, Nyong AE, Rohatgi PK (2011) Langmuir 27:14419

    Article  CAS  Google Scholar 

  50. Kietzig AM, Mirvakili MN, Kamal S, Englezos P, Hatzikiriakos SG (2011) J Adhes Sci Technol 25:1293

    Article  CAS  Google Scholar 

  51. Bormashenko E, Bormashenko Y, Whyman G, Pogreb R, Stanevsky O (2006) J Colloid Interface Sci 302:308

    Article  CAS  Google Scholar 

Download references

Acknowledgments

EB is grateful to Dr. G. Whyman for extremely fruitful discussions. EB is indebted to Mrs. Ye. Bormashenko for her help in preparing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Bormashenko.

Additional information

This article is part of the Topical Collection on Contact Angle Hysteresis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bormashenko, E., Starov, V. Impact of surface forces on wetting of hierarchical surfaces and contact angle hysteresis. Colloid Polym Sci 291, 343–346 (2013). https://doi.org/10.1007/s00396-012-2785-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2785-9

Keywords

Navigation