Skip to main content
Log in

Design and analysis of the homogeneous and heterogeneous distribution of water confined within colloidal polymer particles

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Water is known to distribute within polymeric films in multiple states differentiable by the energy of association. Potentiometric swelling of carboxylated latex samples and subsequent differential scanning calorimetry (DSC) and thermogravimetric analysis verified this distribution of water, specifically confined within colloidal nanoparticle dimensions. DSC cooling curves can delineate between the freezable bound and freezable unbound water at low total water content but become difficult to distinguish the freezable bound contribution at high total water content. Of note is that the ratio of weakly bound water in the secondary layer to the water strongly hydrogen-bound to the polymer is approximately constant regardless of carboxylic acid type and, in fact, is greater for the case of the hydrophobic base polymer. Aside from its distribution within the particles, the total water content also appeared to be more related to the hydroplasticized glass point of the polymer colloid as opposed to the polarity of the polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Andronikashvili EL, Mrevlishvili GM, Japaridze GS, Sokhadze VM, Kvadze KA (1976) Biopolymers 15:1991–2004

    Article  CAS  Google Scholar 

  2. Froix MF, Nelson R (1975) Macromolecules 8:726–730

    Article  CAS  Google Scholar 

  3. Nomura S, Hiltner A, Lando JB, Baer E (1977) Biopolymers 16(2):231–246

    Google Scholar 

  4. Preston JM, Tawde GP (1956) J Textile Inst 47:T154–T165

    CAS  Google Scholar 

  5. Magne FC, Portas HJ, Wakeham H (1947) J Amer Chem Soc 69:1896–1902

    Article  CAS  Google Scholar 

  6. Magne FC, Skau EL (1952) Text Res J 22:748–756

    Article  CAS  Google Scholar 

  7. Nakamura K, Hatakeyama T, Hatakeyama H (1981) Text Res J 51(9):607–613

    Article  CAS  Google Scholar 

  8. Hatakeyama T, Tanaka M, Kishi A, Hatakeyama H (2012) Thermochim Acta 532(20):159–163

    Article  CAS  Google Scholar 

  9. Lueng HK, Steinberg MP (1979) J Food Sci 44(4):1212–1216

    Article  Google Scholar 

  10. Pham QT (1987) J Food Sci 52(1):210–212

    Article  Google Scholar 

  11. Liu WG, Yao KD (2001) Polymer 42:3943–3947

    Article  CAS  Google Scholar 

  12. Barrie JA (1968) In: Crank J, Park GS (eds) “Diffusion in Polymers”, Academic Press, London and New York, Chapter 8

    Google Scholar 

  13. Barrie JA (1990) In: van Krevelen D (ed) “Properties of Polymers”, 3rd edn. Elsevier, Amsterdam, p 572

    Google Scholar 

  14. Tsavalas JG, Sundberg DC (2010) Langmuir 26(10):6960–6966

    Article  CAS  Google Scholar 

  15. Jiang B, Tsavalas JG, Sundberg DC (2010) Langmuir 26(12):9408–9415

    Article  CAS  Google Scholar 

  16. Ping ZH, Nguyen QT, Chen SM, Zhou JQ, Ding YD (2001) Polymer 42:8461–8467

    Article  CAS  Google Scholar 

  17. Zimm BH, Lundberg JL (1956) J Physical Chemistry 60:425–428

    Article  CAS  Google Scholar 

  18. Okubo M, Ito A, Okada M, Suzuki T (2002) Colloid Polym Sci 280:574–578

    Article  CAS  Google Scholar 

  19. Blair HE, Johnson GE, Merriweather R (1978) J Appl Phys 49:4976–4984

    Article  Google Scholar 

  20. Johnson GE, Blair HE, Matsuoka S, Anderson EW, Scott JE (1980) ACS Symp Ser 127:451–468

    Article  CAS  Google Scholar 

  21. Cho JK, Meng Z, Lyon A, Breedveld V (2008) AIP Conference Proceedings 1027(1):1156–1158

    Article  CAS  Google Scholar 

  22. Brown GL (1980) ACS Symp Ser 127:441–450

    Article  CAS  Google Scholar 

  23. Lee DI, Chen FB (2007) J Coat Technol Res 4(2):161–165

    Article  CAS  Google Scholar 

  24. Hatakeyama T, Nakamura K, Hatakeyama H (1988) Thermochim Acta 123:153–161

    Article  CAS  Google Scholar 

  25. Higuchi A, Iijima T (1985) Polymer 26, p 1207–1211 and p 1833–1837

  26. Rodriguez O, Fornasiero F, Arce A, Radke CJ, Prausnitz JM (2003) Polymer 44:6323–6333

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor Donald C. Sundberg for insightful discussions and to the NH EPSCoR program which partially supported this work through National Science Foundation grant # EPS-071730.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Tsavalas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, Y., Child, J.R. & Tsavalas, J.G. Design and analysis of the homogeneous and heterogeneous distribution of water confined within colloidal polymer particles. Colloid Polym Sci 291, 143–156 (2013). https://doi.org/10.1007/s00396-012-2693-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2693-z

Keywords

Navigation