Skip to main content

Advertisement

Log in

Protective role of heme oxygenase-1 in atrial remodeling

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Structural and electrical remodeling in the atrium constitutes the main feature of atrial fibrillation (AF), which is characterized by increased oxidative stress. Heme oxygenase-1 (HO-1) is a potent anti-oxidant system that may provide protection against various oxidative stress-related diseases. The aim of this study is to investigate whether HO-1 has a protective effect on AF-related remodeling. Cultured atrium-derived myocytes (HL-1 cell line) were used to evaluate tachypacing-induced oxidative stress, structural, and electrical remodeling. Transforming growth factor-β (TGF-β) was utilized to assess collagen (a main fibrosis-related protein) expression in atrial fibroblasts. Tachypacing in HL-1 myocytes and treatment of atrial fibroblasts with TGF-β enhanced the expression of HO-1, both of which were mediated by the activation of nuclear factor erythroid-2-related factor 2. Over-expression of HO-1 in HL-1 cells attenuated tachypacing-induced oxidative stress, myofibril degradation, down-regulation of L-type calcium channel, and shortening of action potential duration. Furthermore, HO-1 over-expression in atrial fibroblasts blocked the up-regulation of collagen by TGF-β, implicating a protective role of HO-1 in structural and electrical remodeling in the atrium. In vivo, HO-1−/− mice exhibited a higher degree of oxidative stress, myofibril degradation, and collagen deposit in their atria than wild-type mice. Moreover, burst atrial pacing induced a greater susceptibility to AF in HO-1−/− mice than in wild-type mice. In conclusion, a negative-feedback regulation of HO-1 in activated atrial myocytes and fibroblasts may provide protection against AF-related remodeling and AF development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adam O, Frost G, Custodis F, Sussman MA, Schafers HJ, Bohm M, Laufs U (2007) Role of Rac1 GTPase activation in atrial fibrillation. J Am Coll Cardiol 50:359–367. doi:10.1016/j.jacc.2007.03.041

    Article  CAS  PubMed  Google Scholar 

  2. Akki A, Zhang M, Murdoch C, Brewer A, Shah AM (2009) NADPH oxidase signaling and cardiac myocyte function. J Mol Cell Cardiol 47:15–22. doi:10.1016/j.yjmcc.2009.04.004

    Article  CAS  PubMed  Google Scholar 

  3. Burstein B, Nattel S (2008) Atrial fibrosis: mechanism and clinical relevance in atrial fibrillation. J Am Coll Cardiol 51:802–809. doi:10.1016/j.jacc.2007.09.064

    Article  CAS  PubMed  Google Scholar 

  4. Burstein B, Qi XY, Yeh YH, Calderone A, Nattel S (2007) Atrial cardiomyocyte tachycardia alters cardiac fibroblast function: a novel consideration in atrial remodeling. Cardiovasc Res 76:442–452. doi:10.1016/j.cardiores.2007.07.013

    Article  CAS  PubMed  Google Scholar 

  5. Chen YH, Chau LY, Lin MW, Chen LC, Yo MH, Chen JW, Lin SJ (2004) Heme oxygenase-1 gene promotor microsatellite polymorphism is associated with angiographic restenosis after coronary stenting. Eur Heart J 25:39–47. doi:10.1016/j.ehj.2003.10.009

    Article  PubMed  Google Scholar 

  6. Chen YH, Lin SJ, Lin MW, Tsai HL, Kuo SS, Chen JW, Charng MJ, Wu TC, Chen LC, Ding YA, Pan WH, Jou YS, Chau LY (2002) Microsatellite polymorphism in promoter of heme oxygenase-1 gene is associated with susceptibility to coronary artery disease in type 2 diabetic patients. Hum Genet 111:1–8. doi:10.1007/s00439-002-0769-4

    Article  CAS  PubMed  Google Scholar 

  7. Chen WJ, Yeh YH, Lin KH, Chang GJ, Kuo CT (2011) Molecular characterization of thyroid hormone-inhibited atrial L-type calcium channel expression: implication for atrial fibrillation in hyperthyroidism. Basic Res Cardiol 106:163–174. doi:10.1007/s00395-010-0149-5

    Article  CAS  PubMed  Google Scholar 

  8. Cheng C, Noordeloos AM, Jeney V, Soares MP, Moll F, Pasterkamp G, Serruys PW, Duckers HJ (2009) Heme oxygenase 1 determines atherosclerotic lesion progression into a vulnerable plaque. Circulation 119:3017–3027. doi:10.1161/CIRCULATIONAHA.108.808618

    Article  CAS  PubMed  Google Scholar 

  9. Claycomb WC, Lanson NA Jr, Stallworth BS, Egeland DB, Delcarpio JB, Bahinski A, Izzo NJ Jr (1998) HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci USA 95:2979–2984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Corradi D, Callegari S, Maestri R, Benussi S, Bosio S, Palma GD, Alinovi R, Caglieri A, Goldoni M, Mozzoni P, Pastori P, Manotti L, Nascimbene S, Dorigo E, Rusconi R, Astorri E, Alfieri O (2008) Heme oxygenase-1 expression in the left atrial myocardium of patients with chronic atrial fibrillation related to mitral valve disease: its regional relationship with structural remodeling. Hum Pathol 39:1162–1171. doi:10.1016/j.humpath.2007.12.007

    Article  CAS  PubMed  Google Scholar 

  11. Czibik G, Derumeaux G, Sawaki D, Valen G, Motterlini R (2014) Heme oxygenase-1: an emerging therapeutic target to curb cardiac pathology. Basic Res Cardiol 109:450. doi:10.1007/s00395-014-0450-9

    Article  PubMed  Google Scholar 

  12. Datla SR, Dusting GJ, Mori TA, Taylor CJ, Croft KD, Jiang F (2007) Induction of heme oxygenase-1 in vivo suppresses NADPH oxidase-derived oxidative stress. Hypertension 50:636–642. doi:10.1161/HYPERTENSIONAHA.107.092296

    Article  CAS  PubMed  Google Scholar 

  13. Duckers HJ, Boehm M, True AL, Yet SF, San H, Park JL, Clinton Webb R, Lee ME, Nabel GJ, Nabel EG (2001) Heme oxygenase-1 protects against vascular constriction and proliferation. Nat Med 7:693–698. doi:10.1038/89068

    Article  CAS  PubMed  Google Scholar 

  14. Dudley SC Jr, Hoch NE, McCann LA, Honeycutt C, Diamandopoulos L, Fukai T, Harrison DG, Dikalov SI, Langberg J (2005) Atrial fibrillation increases production of superoxide by the left atrium and left atrial appendage: role of the NADPH and xanthine oxidases. Circulation 112:1266–1273. doi:10.1161/CIRCULATIONAHA.105.538108

    Article  CAS  PubMed  Google Scholar 

  15. Fan J, Zou L, Cui K, Woo K, Du H, Chen S, Ling Z, Zhang Q, Zhang B, Lan X, Su L, Zrenner B, Yin Y (2015) Atrial overexpression of angiotensin-converting enzyme 2 improves the canine rapid atrial pacing-induced structural and electrical remodeling. Fan, ACE2 improves atrial substrate remodeling. Basic Res Cardiol 110:45. doi:10.1007/s00395-015-0499-0

    Article  PubMed  Google Scholar 

  16. Heijman J, Dobrev D (2015) Irregular rhythm and atrial metabolism are key for the evolution of proarrhythmic atrial remodeling in atrial fibrillation. Basic Res Cardiol 110:41. doi:10.1007/s00395-015-0498-1

    Article  PubMed  Google Scholar 

  17. Hsu LA, Yeh YH, Kuo CT, Chen YH, Chang GJ, Tsai FC, Chen WJ (2014) Microsatellite polymorphism in the heme oxygenase-1 gene promoter and the risk of atrial fibrillation in Taiwanese. PLoS One 9:e108773. doi:10.1371/journal.pone.0108773

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hu YF, Lee KT, Wang HH, Ueng KC, Yeh HI, Chao TF, Liao JN, Lin YJ, Chang SL, Lo LW, Tuan TC, Li CH, Chung FP, Hsu CP, Chang HH, Huang CH, Chen SA (2013) The association between heme oxygenase-1 gene promoter polymorphism and the outcomes of catheter ablation of atrial fibrillation. PLoS One 8:e56440. doi:10.1371/journal.pone.0056440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang JY, Chiang MT, Yet SF, Chau LY (2012) Myeloid heme oxygenase-1 haploinsufficiency reduces high fat diet-induced insulin resistance by affecting adipose macrophage infiltration in mice. PLoS One 7:e38626. doi:10.1371/journal.pone.0038626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ishikawa K, Sugawara D, Goto J, Watanabe Y, Kawamura K, Shiomi M, Itabe H, Maruyama Y (2001) Heme oxygenase-1 inhibits atherogenesis in Watanabe heritable hyperlipidemic rabbits. Circulation 104:1831–1836. doi:10.1161/hc3901.095897

    Article  CAS  PubMed  Google Scholar 

  21. Ishikawa K, Sugawara D, Xp Wang, Suzuki K, Itabe H, Maruyama Y, Lusis AJ (2001) Heme oxygenase-1 inhibits atherosclerotic lesion formation in LDL-receptor knockout mice. Circ Res 88:506–512. doi:10.1161/01.RES.88.5.506

    Article  CAS  PubMed  Google Scholar 

  22. Juan SH, Lee TS, Tseng KW, Liou JY, Shyue SK, Wu KK, Chau LY (2001) Adenovirus-mediated heme oxygenase-1 gene transfer inhibits the development of atherosclerosis in apolipoprotein E-deficient mice. Circulation 104:1519–1525. doi:10.1161/hc3801.095663

    Article  CAS  PubMed  Google Scholar 

  23. Kim YM, Guzik TJ, Zhang YH, Zhang MH, Kattach H, Ratnatunga C, Pillai R, Channon KM, Casadei B (2005) A myocardial Nox2 containing NAD(P)H oxidase contributes to oxidative stress in human atrial fibrillation. Circ Res 97:629–636. doi:10.1161/01.RES.0000183735.09871.61

    Article  CAS  PubMed  Google Scholar 

  24. Kim YM, Kattach H, Ratnatunga C, Pillai R, Channon KM, Casadei B (2008) Association of atrial nicotinamide adenine dinucleotide phosphate oxidase activity with the development of atrial fibrillation after cardiac surgery. J Am Coll Cardiol 51:68–74. doi:10.1016/j.jacc.2007.07.085

    Article  CAS  PubMed  Google Scholar 

  25. Kronke G, Bochkov VN, Huber J, Gruber F, Bluml S, Furnkranz A, Kadl A, Binder BR, Leitinger N (2003) Oxidized phospholipids induce expression of human heme oxygenase-1 involving activation of cAMP-responsive element-binding protein. J Biol Chem 278:51006–51014. doi:10.1074/jbc.M304103200

    Article  PubMed  Google Scholar 

  26. Mace LC, Yermalitskaya LV, Yi Y, Yang Z, Morgan AM, Murray KT (2009) Transcriptional remodeling of rapidly stimulated HL-1 atrial myocytes exhibits concordance with human atrial fibrillation. J Mol Cell Cardiol 47:485–492. doi:10.1016/j.yjmcc.2009.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nakajima H, Nakajima HO, Salcher O, Dittie AS, Dembowsky K, Jing S, Field LJ (2000) Atrial but not ventricular fibrosis in mice expressing a mutant transforming growth factor-beta(1) transgene in the heart. Circ Res 86:571–579. doi:10.1161/01.RES.86.5.571

    Article  CAS  PubMed  Google Scholar 

  28. Nguyen T, Huang HC, Pickett CB (2000) Transcriptional regulation of the antioxidant response elements. Activation by Nrf2 and repression by MafK. J Biol Chem 275:15466–15473. doi:10.1074/jbc.M000361200

    Article  CAS  PubMed  Google Scholar 

  29. Purohit A, Rokita AG, Guan X, Chen B, Koval OM, Voigt N, Neef S, Sowa T, Gao Z, Luczak ED, Stefansdottir H, Behunin AC, Li N, El-Accaoui RN, Yang B, Swaminathan PD, Weiss RM, Wehrens XH, Song LS, Dobrev D, Maier LS, Anderson ME (2013) Oxidized Ca(2+)/calmodulin-dependent protein kinase II triggers atrial fibrillation. Circulation 128:1748–1757. doi:10.1161/CIRCULATIONAHA.113.003313

    Article  CAS  PubMed  Google Scholar 

  30. Reilly SN, Jayaram R, Nahar K, Antoniades C, Verheule S, Channon KM, Alp NJ, Schotten U, Casadei B (2011) Atrial sources of reactive oxygen species vary with the duration and substrate of atrial fibrillation. Circulation 124:1107–1117. doi:10.1161/CIRCULATIONAHA.111.029223

    Article  CAS  PubMed  Google Scholar 

  31. Ryter SW, Alam J, Choi AM (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 86:583–650. doi:10.1152/physrev.00011.2005

    Article  CAS  PubMed  Google Scholar 

  32. Schillinger M, Exner M, Minar E, Mlekusch W, Mullner M, Mannhalter C, Bach FH, Wagner O (2004) Heme oxygenase-1 genotype and restenosis after balloon angioplasty: a novel vascular protective factor. J Am Coll Cardiol 43:950–957. doi:10.1016/j.jacc.2003.09.058

    Article  CAS  PubMed  Google Scholar 

  33. Schotten U, Verheule S, Kirchhof P, Goette A (2011) Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev 91:265–325. doi:10.1152/physrev.00031.2009

    Article  PubMed  Google Scholar 

  34. Taille C, El-Benna J, Lanone S, Dang MC, Ogier-Danis E, Aubier M, Boczkowski J (2004) Induction of heme oxygenase-1 inhibits NAD(P)H oxidase activity by dow-regulating cytochrome b588 expression via the induction of heme availability. J Biol Chem 279:28681–28688. doi:10.1074/jbc.M310661200

    Article  CAS  PubMed  Google Scholar 

  35. Tulis DA, Durante W, Liu X, Evan AJ, Peyton KJ, Schafer AI (2001) Adenovirus-mediated heme oxygenase-1 gene delivery inhibits injury-induced vascular neointima formation. Circulation 104:2710–2715. doi:10.1161/hc4701.099585

    Article  CAS  PubMed  Google Scholar 

  36. Tulis DA, Durante W, Peyton KJ, Evans AJ, Schafer AI (2001) Heme oxygenase-1 attenuates vascular remodeling following balloon injury in rat carotid arteries. Atherosclerosis 155:113–122. doi:10.1016/S0021-9150(00)00552-9

    Article  CAS  PubMed  Google Scholar 

  37. Verheule S, Sato T, Everett T, Engle SK, Otten D, der Rubart-von LM, Nakajima HO, Nakajima H, Field LJ, Olgin JE (2004) Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-beta1. Circ Res 94:1458–1465. doi:10.1161/01.RES.0000129579.59664.9d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Villmow M, Klöckner U, Heymes C, Gekle M, Rueckschloss U (2015) NOS1 induces NADPH oxidases and impairs contraction kinetics in aged murine ventricular myocytes. Basic Res Cardiol 110:506. doi:10.1007/s00395-015-0506-5

    Article  PubMed  Google Scholar 

  39. Wang R, Shamloul R, Wang X, Meng Q, Wu L (2006) Sustained normalization of high blood pressure in spontaneously hypertensive rats by implanted hemin pump. Hypertension 48:685–692. doi:10.1161/01.HYP.0000239673.80332.2f

    Article  CAS  PubMed  Google Scholar 

  40. Yang Z, Shen W, Rottman JN, Wilswo JP, Marray KT (2005) Rapid stimulation causes electrical remodeling in cultured atrial myocytes. J Mol Cell Cardiol 38:299–308. doi:10.1016/j.yjmcc.2004.11.015

    Article  CAS  PubMed  Google Scholar 

  41. Yeh YH, Kuo CT, Chan TH, Chang GJ, Qi XY, Tsai FC, Nattel S, Chen WJ (2011) Transforming growth factor-beta and oxidative stress mediate tachycardia-induced cellular remodelling in cultured atrial-derived myocytes. Cardiovasc Res 91:62–70. doi:10.1093/cvr/cvr041

    Article  CAS  PubMed  Google Scholar 

  42. Yeh YH, Kuo CT, Chang GJ, Chen YH, Lai YJ, Cheng ML, Chen WJ (2015) Rosuvastatin suppresses atrial tachycardia-induced cellular remodeling via Akt/Nrf2/heme oxygenase-1 pathway. J Mol Cell Cardiol 82:84–92. doi:10.1016/j.yjmcc.2015.03.004

    Article  CAS  PubMed  Google Scholar 

  43. Yeh YH, Kuo CT, Chang GJ, Qi XY, Nattel S, Chen WJ (2013) Nicotinamide adenine dinucleotide phosphate oxidase 4 mediates the differential responsiveness of atrial versus ventricular fibroblasts to transforming growth factor-β. Cir Arrhythm Elec 6:790–798. doi:10.1161/CIRCEP.113.000338

    Article  CAS  Google Scholar 

  44. Yet SF, Layne MD, Liu X, Chen YH, Ith B, Sibinga NE, Perrella MA (2003) Absence of heme oxygenase-1 exacerbates atherosclerosis lesion formation and vascular remodeling. FASEB J 17:1759–1761. doi:10.1096/fj.03-0187fje

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Lee-Young Chau for her technical assistance in measuring HO activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Jan Chen.

Ethics declarations

Funding

This work was supported by the Chang Gung Research Grant Foundation (CMRPG 3A0571-3, 3A0641-3, 391111, 3B0991-3, 3C062, and 13D1371-3); and the National Science Council Grant (NSC 99-2314-B-182A-050-MY2, NSC100-2314-B-182-049, and 102-2314-B-182A-053-MY3).

Conflict of interest

None declared.

Additional information

Y.-H. Yeh and L.-A. Hsu contribute equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1994 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeh, YH., Hsu, LA., Chen, YH. et al. Protective role of heme oxygenase-1 in atrial remodeling. Basic Res Cardiol 111, 58 (2016). https://doi.org/10.1007/s00395-016-0577-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-016-0577-y

Keywords

Navigation