Skip to main content

Advertisement

Log in

Septic cardiomyopathy in rat LPS-induced endotoxemia: relative contribution of cellular diastolic Ca2+ removal pathways, myofibrillar biomechanics properties and action of the cardiotonic drug levosimendan

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Cardiac dysfunction is a common complication in sepsis and is characterized by forward pump failure. Hallmarks of septic cardiomyopathy are decreased myofibrillar contractility and reduced Ca2+ sensitivity but it is still not clear whether reduced pump efficiency is predominantly a diastolic impairment. Moreover, a comprehensive picture of upstream Ca2+ handling mechanisms and downstream myosin biomechanical parameters is still missing. Ca2+-sensitizing agents in sepsis may be promising but mechanistic insights for drugs like levosimendan are scarce. Here, we used an endotoxemic LPS rat model to study mechanisms of sepsis on in vivo hemodynamics, multicellular myofibrillar Ca2+ sensitivity, in vitro cellular Ca2+ homeostasis and subcellular actomyosin interaction with intracardiac catheters, force transducers, confocal Fluo-4 Ca2+ recordings in paced cardiomyocytes, and in vitro motility assay, respectively. Left ventricular ejection fraction and myofibrillar Ca2+ sensitivity were depressed in LPS animals but restored by levosimendan. Diastolic Ca2+ transient kinetics was slowed down by LPS but ameliorated by levosimendan. Selectively blocking intracellular and sarcolemmal Ca2+ extrusion pathways revealed minor contribution of sarcoplasmic reticulum Ca2+ ATPase (SERCA) to Ca2+ transient diastole in LPS-evoked sepsis but rather depressed Na+/Ca2+ exchanger and plasmalemmal Ca2+ ATPase. This was mostly compensated by levosimendan. Actin sliding velocities were depressed in myosin heart extracts from LPS rats. We conclude that endotoxemia specifically impairs sarcolemmal diastolic Ca2+ extrusion pathways resulting in intracellular diastolic Ca2+ overload. Levosimendan, apart from stabilizing Ca2+-troponin C complexes, potently improves cellular Ca2+ extrusion in the septic heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aoki Y, Hatakeyama N, Yamamoto S, Kinoshita H, Matsuda N, Hattori Y, Yamazaki M (2012) Role of ion channels in sepsis-induced atrial tachyarrhythmias in guinea pigs. Br J Pharmacol 166(1):390–400. doi:10.1111/j.1476-5381.2011.01769.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Bruni FD, Komwatana P, Soulsby ME, Hess ML (1978) Endotoxin and myocardial failure: role of the myofibril and venous return. Am J Physiol 235(2):H150–H156

    CAS  PubMed  Google Scholar 

  3. Celes MR, Malvestio LM, Suadicani SO, Prado CM, Figueiredo MJ, Campos EC, Freitas AC, Spray DC, Tanowitz HB, da Silva JS, Rossi MA (2013) Disruption of calcium homeostasis in cardiomyocytes underlies cardiac structural and functional changes in severe sepsis. PLoS One 8(7):e66809. doi:10.1371/journal.pone.0068809

    Article  Google Scholar 

  4. Ceylan-Isik AF, Zhao P, Zhang B, Xiao X, Su G, Ren J (2010) Cardiac overexpression of metallothionein rescues cardiac contractile dysfunction and endoplasmic reticulum stress but not autophagy in sepsis. J Mol Cell Cardiol 48(2):367–378. doi:10.1016/j.yjmcc.2009.11.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Duncan DJ, Yang Z, Hopkins PM, Steele DS, Harrison SM (2010) TNF-alpha and IL-1beta increase Ca2 + leak from the sarcoplasmic reticulum and susceptibility arrhythmia in rat ventricular myocytes. Cell Calcium 47(4):378–386. doi:10.1016/j.ceca.2010.02.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Edes I, Kiss E, Kitada Y, Powers FM, Papp JG, Kranias EG, Solaro RJ (1995) Effects of levosimendan, a cardiotonic agent targeted to troponin C, on cardiac function and on phosphorylation and Ca2 + sensitivity of cardiac myofibrils and sarcoplasmic reticulum in guinea pig heart. Circ Res 77(1):107–113. doi:10.1161/01.RES.77.1.107

    Article  CAS  PubMed  Google Scholar 

  7. Endoh M (2008) Cardiac Ca2+ signaling and Ca2+ sensitizers. Circ J 72:1915–1925. doi:10.1253/circj.CJ-08-0838

    Article  CAS  PubMed  Google Scholar 

  8. Flynn A, Chokkalingam MB, Mather PJ (2010) Sepsis-induced cardiomyopathy: a review of pathophysiologic mechanisms. Heart Fail Rev 15(6):605–611. doi:10.1007/s10741-010-9176-4

    Article  PubMed  Google Scholar 

  9. Gandhi A, Siedlecka U, Shah AP, Navratnarajah M, Yacoub MH, Terracciano CM (2013) The effect of SN-6, a novel sodium––calcium exchange inhibitor, on contractility and calcium handling in isolated failing rat ventricular myocytes. Cardiovasc Ther 31(6):e115–e124. doi:10.1111/1755-5922.12045

    Article  CAS  PubMed  Google Scholar 

  10. Gödeny I, Pollesello P, Edes I, Papp Z, Bagi Z (2013) Levosimendan and its metabolite OR-1896 elicit KATP channel-dependent dilation in resistance arteries in vivo. Pharmacol Rep 65(5):1304–1310. doi:10.1016/S1734-1140(13)71488-9

    Article  PubMed Central  PubMed  Google Scholar 

  11. Haikala H, Nissinen E, Etemadzadeh E, Levijoki J, Linden IB (1995) Troponin C-mediated calcium-sensitization induced by levosimendan does not impair relaxation. J Cardiovasc Pharmacol 25(5):794–801. doi:10.1097/00005344-199505000-00016

    Article  CAS  PubMed  Google Scholar 

  12. Hassoun SM, Marechal X, Montaigne D, Bouazza Y, Decoster B, Lancel S, Neviere R (2008) Prevention of endotoxin-induced sarcoplasmic reticulum calcium leak improves mitochondrial and myocardial dysfunction. Crit Care Med 36(9):2590–2596. doi:10.1186/cc4854

    Article  CAS  PubMed  Google Scholar 

  13. Heinzel FR, Gres P, Boengler K, Duschin A, Konietzka I, Rassaf T, Snedovskaya J, Meyer S, Skyschally A, Kelm M, Heusch G, Schulz R (2008) Inducible nitric oxide expression and cardiomyocyte dysfunction during sustained moderate ischemia in pigs. Circ Res 103:1120–1127. doi:10.1161/CIRCRESAHA.108.186015

    Article  CAS  PubMed  Google Scholar 

  14. Hillestad V, Kramer F, Golz S, Knorr A, Andersson KB (1985) Christensen G (1985) Long-term levosimendan treatment improves systolic function and myocardial relaxation in mice with cardiomyocyte-specific disruption of the Serca2 gene. J Appl Physiol 115(10):1572–1580. doi:10.1152/japplphysiol.01044.2012

    Article  Google Scholar 

  15. Hobai IA, Buys ES, Morse JC, Edgecomb J, Weiss EH, Amoundas AA, Hou X, Khandelwal AR, Siwik DA, Brouckaert P, Cohen RA, Colucci WS (2013) Cys674 sulphonylation and inhibition of L-type Ca2 + influx contribute to cardiac dysfunction in endotoxemic mice, independent of cGMP synthesis. Am J Physiol Heart Circ Physiol 305(8):H1189–H1200. doi:10.1152/ajpheart.00392.2012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Koesters A, Engisch KL, Rich MM (2014) Decreased cardiac excitability secondary to reduction of sodium current may be a significant contributor to reduced contractility in a rat model of sepsis. Crit Care 18(2):R54. doi:10.1186/cc13800

    Article  PubMed Central  PubMed  Google Scholar 

  17. Lancaster MK, Cook SJ (1997) The effects of levosimendan on [Ca2 +]I in guinea-pig isolated ventricular myocytes. Eur J Pharmacol 339(1):97–100. doi:10.1016/S0014-2999(97)01362-9

    Article  CAS  PubMed  Google Scholar 

  18. Landesberg G, Gilon D, Meroz Y, Georgieva M, Levin PD, Goodman S, Avidan A, Beeri R, Weissman C, Jaffe AS, Sprung CL (2012) Diastolic dysfunction and mortality in severe sepsis and septic shock. Eur Heart J 33:895–903. doi:10.1093/eurheartj/ehr351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Li C, YanG YC, Hwang GY, Kao LS, Lin CY (2014) Inhibition of reverse-mode sodium-calcium exchanger activity and apoptosis by levosimendan in human cardiomyocyte progenitor cell-derived cardiomyocytes after anoxia and reoxygenation. PLoS One 9(2):e85909. doi:10.1371/journal.pone.0085909

    Article  PubMed Central  PubMed  Google Scholar 

  20. Magi S, Nasti AA, Gratteri S, Castaldo P, Bompadre S, Amoroso S, Lariccia V (2015) Gram-negative endotoxin lipopolysaccharide induces cardiac hypertrophy: detrimental role of Na(+)-Ca(2 +)-exchanger. Eur J Pharmacol 746:31–40. doi:10.1016/j.ejphar.2014.10.054

    Article  CAS  PubMed  Google Scholar 

  21. Morelli A, De Castro S, Teboul JL, Singer M, Ronco M, Conti G, De Luca L, Di Angelantonia E, Orecchioni A, Pandian NG, Pietropaoli P (2005) Effects of levosimendan on systemic and regional hemodynamics in septic myocardial depression. Intensive Care Med 31:638–644. doi:10.1007/s00134-005-2619-z

    Article  PubMed  Google Scholar 

  22. Negretti N, O’Neill SC, Eisner DA (1993) The relative contributions of different intracellular and sarcolemmal systems to relaxation in rat ventricular myocytes. Cardiovasc Res 27:1826–1830. doi:10.1093/cvr/27.10.1826

    Article  CAS  PubMed  Google Scholar 

  23. Orme RM, Perkins GD, McAuley DF, Liu KD, Mason AJ, Morelli A, Singer M, Ashby D, Gordon AC (2014) An efficacy and mechanism evaluation study of levosimendan for the Prevention of Acute oRgan Dysfunction in Sepsis (LeoPARDS): protocol for a randomized controlled trial. Trials 15:199. doi:10.1186/1745-6215-15-199

    Article  PubMed Central  PubMed  Google Scholar 

  24. Orstavik O, Ata SH, Riise J, Dahl CP, Andersen GO, Levy FO, Skomedal T, Osnes JB, Qvigstad E (2014) Inhibition of phosphodiesterase-3 by levosimendan is sufficient to account for its inotropic effect in failing human heart. Br J Pharmacol 171(23):5169–5181. doi:10.1111/bph.12647

    Article  CAS  PubMed  Google Scholar 

  25. Orstavik O, Manfra O, Andressen KW, Andersen GO, Skomedal T, Osnes JB, Levy FO, Krobert KA (2015) The inotropic effect of the active metabolite of levosimendan, OR-1896, is mediated through inhibition of PDE3 in rat ventricular myocardium. PLoS One 10(3):e0115547. doi:10.1371/journal.pone.0115547

    Article  PubMed Central  PubMed  Google Scholar 

  26. Ren J, Ren BH, Sharma AC (2002) Sepsis-induced depressed contractile function of isolated ventricular myocytes is due to altered calcium transient properties. Shock 18(3):285–288. doi:10.1097/00024382-200209000-00014

    Article  PubMed  Google Scholar 

  27. Rozenberg S, Besse S, Brisson H, Jozefowicz E, Kandoussi A, Mebazaa A, Riou B, Vallet B, Tavernier B (2006) Endotoxin-induced myocardial dysfunction in senescent rats. Crit Care 10(4):R124. doi:10.1186/cc5033

    Article  PubMed Central  PubMed  Google Scholar 

  28. Rudiger A, Singer M (2013) The heart in sepsis: from basic mechanisms to clinical management. Curr Vasc Pharmacol 11(2):187–195. doi:10.2174/1570161111311020008

    CAS  PubMed  Google Scholar 

  29. Svensson C, Morano I, Arner A (1997) In vitro motility assay of atrial and ventricular myosin from pig. J Cell Biochem 67(2):241–247. doi:10.1002/(SICI)1097-4644(19971101)67:2<241:AID-JCB9>3.0.CO;2-X

    Article  CAS  PubMed  Google Scholar 

  30. Szalay L, Kaszaki J, Nagy S, Boros M (1998) The role of endothelin-1 in circulatory changes during hypodynamic sepsis in the rat. Shock 10(2):123–128

    Article  CAS  PubMed  Google Scholar 

  31. Tavernier B, Garrigue D, Boulle C, Vallet B, Adnet P (1998) Myofilament calcium sensitivity is decreased in skinned cardiac fibres of endotoxin-treated rabbits. Cardiovasc Res 38(2):472–479. doi:10.1016/S0008-6363(98)00028-5

    Article  CAS  PubMed  Google Scholar 

  32. Van de Sandt AM, Windler R, Gödecke A, Ohlig J, Zander S, Reinartz M, Graf J, van Faassen EE, Rassaf T, Schrader J, Kelm M, Merx MW (2013) Endothelial NOS (NOS3) impairs myocardial function in developing sepsis. Baris Res Cardiol 108:330. doi:10.1007/s00395-013-0330-8

    Article  Google Scholar 

  33. Vieillard-Baron A (2011) Septic cardiomyopathy. Ann Intensive Care 1(1):6. doi:10.1186/2110-5820-1-6

    Article  PubMed  Google Scholar 

  34. Wagner S, Knipp S, Weber C, Hein S, Schinkel S, Walther A, Bekeredjian R, Müller OJ, Friedrich O (2012) The heart in Duchenne muscular dystrophy: early detection of contractile performance alteration. J Cell Mol Med 16(12):3028–3036. doi:10.1111/j.1582-4934.2012.01630.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Werdan K, Müller U, Reithmann C, Pfeifer A, Hallström S, Koidl B, Schlag G (1991) Mechanisms in acute septic cardiomyopathy: evidence from isolated myocytes. Basic Res Cardiol 86(5):411–421. doi:10.1007/BF02190709

    Article  CAS  PubMed  Google Scholar 

  36. Wu LL, Liu MS (1992) Heart sarcolemmal Ca2 + transport in endotoxin shock: I. impairment of ATP-dependent Ca2 + transport. Mol Cell Biochem 112(2):125–133. doi:10.1007/BF00227569

    Article  CAS  PubMed  Google Scholar 

  37. Wu LL, Tang C, Liu MS (2001) Altered phosphorylation and calcium sensitivity of cardiac myofibrillar proteins during sepsis. Am J Physiol Regul Integr Comp Physiol 281(2):R408–R416

    CAS  PubMed  Google Scholar 

  38. Yu X, Jia B, Wang F, Lv X, Peng X, Wang Y, Li H, Wang Y, Lu D, Wang H (2014) α1 adrenoceptor activation by norepinephrine inhibits LPS-induced cardiomyocyte TNF-α production via modulating ERK1/2 and NF-κB pathway. J Cell Mol Med 18(2):263–273. doi:10.1111/jcmm.12184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Zausig YA, Geilfus D, Missler G, Sinenr B, Graf BM, Zink W (2010) Direct cardiac effects of dobutamine, dopamine, epinephrine, and levosimendan in isolated septic rat hearts. Shock 34(3):269–274. doi:10.1097/SHK.0b013e3181cd877b

    Article  CAS  PubMed  Google Scholar 

  40. Zhang XH, Li GR, Bourreau JP (2007) The effect of adrenomedullin on the L-type calcium current in myocytes from septic shock rats: signaling pathway. Am J Physiol Heart Circ Physiol 293(5):H2888–H2893. doi:10.1152/ajpheart.00312.2007

    Article  CAS  PubMed  Google Scholar 

  41. Zhu X, Bernecker OY, Manohar NS, Haijar RJ, Hellman J, Ichinose F, Valdiva HH, Schmidt U (2005) Increased leakage of sarcoplasmic reticulum Ca2 + contributes to abnormal myocyte Ca2 + handling and shortening in sepsis. Crit Care Med 33(3):598–604. doi:10.1097/01.CCM.0000152223.27176.A6

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the ELAN Fonds of the Erlangen Medical Faculty (13-02-25-1). The authors acknowledge excellent technical help from R Galmbacher and C Weber for catheter experiments and in vitro motility assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Friedrich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagner, S., Schürmann, S., Hein, S. et al. Septic cardiomyopathy in rat LPS-induced endotoxemia: relative contribution of cellular diastolic Ca2+ removal pathways, myofibrillar biomechanics properties and action of the cardiotonic drug levosimendan. Basic Res Cardiol 110, 50 (2015). https://doi.org/10.1007/s00395-015-0507-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-015-0507-4

Keywords

Navigation