Skip to main content
Log in

Arrhythmia causes lipid accumulation and reduced glucose uptake

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

An Invited Editorial to this article was published on 28 May 2015

Abstract

Atrial fibrillation (AF) is characterized by irregular contractions of atrial cardiomyocytes and increased energy demand. The aim of this study was to characterize the influence of arrhythmia on glucose and fatty acid (FA) metabolism in cardiomyocytes, mice and human left atrial myocardium. Compared to regular pacing, irregular (pseudo-random variation at the same number of contractions/min) pacing of neonatal rat cardiomyocytes induced shorter action potential durations and effective refractory periods and increased diastolic [Ca2+]c. This was associated with the activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and AMP-activated protein kinase (AMPK). Membrane expression of fatty acid translocase (FAT/CD36) and 14C-palmitic acid uptake were augmented while membrane expression of glucose transporter subtype 4 (GLUT-4) as well as 3H-glucose uptake were reduced. Inhibition of AMPK and CaMKII prevented these arrhythmia-induced metabolic changes. Similar alterations of FA metabolism were observed in a transgenic mouse model (RacET) for spontaneous AF. Consistent with these findings samples of left atrial myocardium of patients with AF compared to matched samples of patients with sinus rhythm showed up-regulation of CaMKII and AMPK and increased membrane expression of FAT/CD36, resulting in lipid accumulation. These changes of FA metabolism were accompanied by decreased membrane expression of GLUT-4, increased glycogen content and increased expression of the pro-apoptotic protein bax. Irregular pacing of cardiomyocytes increases diastolic [Ca2+]c and activation of CaMKII and AMPK resulting in lipid accumulation, reduced glucose uptake and increased glycogen synthesis. These metabolic changes are accompanied by an activation of pro-apoptotic signalling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Adam O, Frost G, Custodis F, Sussman MA, Schafers HJ, Böhm M, Laufs U (2007) Role of Rac1 GTPase activation in atrial fibrillation. J Am Coll Cardiol 50:359–367. doi:10.1016/j.jacc.2007.03.041

    Article  CAS  PubMed  Google Scholar 

  2. Adam O, Lavall D, Theobald K, Hohl M, Grube M, Ameling S, Sussman MA, Rosenkranz S, Kroemer HK, Schafers HJ, Böhm M, Laufs U (2010) Rac1-induced connective tissue growth factor regulates connexin 43 and N-cadherin expression in atrial fibrillation. J Am Coll Cardiol 55:469–480. doi:10.1016/j.jacc.2009.08.064

    Article  PubMed  Google Scholar 

  3. Adam O, Lohfelm B, Thum T, Gupta SK, Puhl SL, Schafers HJ, Böhm M, Laufs U (2012) Role of miR-21 in the pathogenesis of atrial fibrosis. Basic Res Cardiol 107:278. doi:10.1007/s00395-012-0278-0

    Article  PubMed  Google Scholar 

  4. Allard MF, Henning SL, Wambolt RB, Granleese SR, English DR, Lopaschuk GD (1997) Glycogen metabolism in the aerobic hypertrophied rat heart. Circulation 96:676–682

    Article  CAS  PubMed  Google Scholar 

  5. Allard MF, Schonekess BO, Henning SL, English DR, Lopaschuk GD (1994) Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am J Physiol 267:H742–H750

    CAS  PubMed  Google Scholar 

  6. Allessie M, Ausma J, Schotten U (2002) Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc Res 54:230–246

    Article  CAS  PubMed  Google Scholar 

  7. Arad M, Seidman CE, Seidman JG (2007) AMP-activated protein kinase in the heart: role during health and disease. Circ Res 100:474–488. doi:10.1161/01.RES.0000258446.23525.37

    Article  CAS  PubMed  Google Scholar 

  8. Ausma J, Wijffels M, Thone F, Wouters L, Allessie M, Borgers M (1997) Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation 96:3157–3163

    Article  CAS  PubMed  Google Scholar 

  9. Ausma J, Wijffels M, van Eys G, Koide M, Ramaekers F, Allessie M, Borgers M (1997) Dedifferentiation of atrial cardiomyocytes as a result of chronic atrial fibrillation. Am J Pathol 151:985–997

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Bostrom P, Andersson L, Li L, Perkins R, Hojlund K, Boren J, Olofsson SO (2009) The assembly of lipid droplets and its relation to cellular insulin sensitivity. Biochem Soc Trans 37:981–985. doi:10.1042/BST0370981

    Article  PubMed  Google Scholar 

  11. de las Fuentes L, Herrero P, Peterson LR, Kelly DP, Gropler RJ, Davila-Roman VG (2003) Myocardial fatty acid metabolism: independent predictor of left ventricular mass in hypertensive heart disease. Hypertension 41:83–87

  12. De Souza AI, Cardin S, Wait R, Chung YL, Vijayakumar M, Maguy A, Camm AJ, Nattel S (2010) Proteomic and metabolomic analysis of atrial profibrillatory remodelling in congestive heart failure. J Mol Cell Cardiol 49:851–863. doi:10.1016/j.yjmcc.2010.07.008

    Article  PubMed  Google Scholar 

  13. Dobrev D, Wehrens XH (2010) Calmodulin kinase II, sarcoplasmic reticulum Ca2+ leak, and atrial fibrillation. Trends Cardiovasc Med 20:30–34. doi:10.1016/j.tcm.2010.03.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Dyck JR, Lopaschuk GD (2006) AMPK alterations in cardiac physiology and pathology: enemy or ally? J Physiol 574:95–112. doi:10.1113/jphysiol.2006.109389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Fischer Y, Thomas J, Sevilla L, Munoz P, Becker C, Holman G, Kozka IJ, Palacin M, Testar X, Kammermeier H, Zorzano A (1997) Insulin-induced recruitment of glucose transporter 4 (GLUT4) and GLUT1 in isolated rat cardiac myocytes. Evidence of the existence of different intracellular GLUT4 vesicle populations. J Biol Chem 272:7085–7092

    Article  CAS  PubMed  Google Scholar 

  16. Frederich M, Balschi JA (2002) The relationship between AMP-activated protein kinase activity and AMP concentration in the isolated perfused rat heart. J Biol Chem 277:1928–1932. doi:10.1074/jbc.M107128200

    Article  CAS  PubMed  Google Scholar 

  17. Goodwin GW, Taylor CS, Taegtmeyer H (1998) Regulation of energy metabolism of the heart during acute increase in heart work. J Biol Chem 273:29530–29539

    Article  CAS  PubMed  Google Scholar 

  18. Harada M, Nattel SN, Nattel S (2012) AMP-activated protein kinase: potential role in cardiac electrophysiology and arrhythmias. Circ Arrhythm Electrophysiol 5:860–867. doi:10.1161/CIRCEP.112.972265

    Article  PubMed  Google Scholar 

  19. Hardie DG, Hawley SA, Scott JW (2006) AMP-activated protein kinase–development of the energy sensor concept. J Physiol 574:7–15. doi:10.1113/jphysiol.2006.108944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Heid HW, Moll R, Schwetlick I, Rackwitz HR, Keenan TW (1998) Adipophilin is a specific marker of lipid accumulation in diverse cell types and diseases. Cell Tissue Res 294:309–321

    Article  CAS  PubMed  Google Scholar 

  21. Heijman J, Voigt N, Nattel S, Dobrev D (2014) Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression. Circ Res 114:1483–1499. doi:10.1161/CIRCRESAHA.114.302226

    Article  CAS  PubMed  Google Scholar 

  22. Heijman J, Voigt N, Wehrens XH, Dobrev D (2014) Calcium dysregulation in atrial fibrillation: the role of CaMKII. Front Pharmacol 5:30. doi:10.3389/fphar.2014.00030

    Article  PubMed Central  PubMed  Google Scholar 

  23. Kaestner L, Scholz A, Hammer K, Vecerdea A, Ruppenthal S, Lipp P (2009) Isolation and genetic manipulation of adult cardiac myocytes for confocal imaging. J Vis Exp. doi:10.3791/1433

    PubMed Central  PubMed  Google Scholar 

  24. Kohlhaas M, Maack C (2010) Adverse bioenergetic consequences of Na + -Ca2 + exchanger-mediated Ca2 + influx in cardiac myocytes. Circulation 122:2273–2280. doi:10.1161/CIRCULATIONAHA.110.968057

    Article  CAS  PubMed  Google Scholar 

  25. Kuang M, Febbraio M, Wagg C, Lopaschuk GD, Dyck JR (2004) Fatty acid translocase/CD36 deficiency does not energetically or functionally compromise hearts before or after ischemia. Circulation 109:1550–1557. doi:10.1161/01.CIR.0000121730.41801.12

    Article  CAS  PubMed  Google Scholar 

  26. Laufs U, Kilter H, Konkol C, Wassmann S, Böhm M, Nickenig G (2002) Impact of HMG CoA reductase inhibition on small GTPases in the heart. Cardiovasc Res 53:911–920

    Article  CAS  PubMed  Google Scholar 

  27. Laufs U, Werner N, Link A, Endres M, Wassmann S, Jurgens K, Miche E, Böhm M, Nickenig G (2004) Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation 109:220–226. doi:10.1161/01.CIR.0000109141.48980.37

    Article  CAS  PubMed  Google Scholar 

  28. Lavall D, Selzer C, Schuster P, Lenski M, Adam O, Schaefers HJ, Boehm M, Laufs U (2014) The mineralocorticoid receptor promotes fibrotic remodeling in atrial fibrillation. J Biol Chem. doi:10.1074/jbc.M113.519256

    PubMed Central  PubMed  Google Scholar 

  29. Lenski M, Kazakov A, Marx N, Böhm M, Laufs U (2011) Effects of DPP-4 inhibition on cardiac metabolism and function in mice. J Mol Cell Cardiol 51:906–918. doi:10.1016/j.yjmcc.2011.08.001

    Article  CAS  PubMed  Google Scholar 

  30. Li J, Zeng Z, Viollet B, Ronnett GV, McCullough LD (2007) Neuroprotective effects of adenosine monophosphate-activated protein kinase inhibition and gene deletion in stroke. Stroke 38:2992–2999. doi:10.1161/STROKEAHA.107.490904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Luiken JJ, Coort SL, Koonen DP, van der Horst DJ, Bonen A, Zorzano A, Glatz JF (2004) Regulation of cardiac long-chain fatty acid and glucose uptake by translocation of substrate transporters. Pflugers Arch 448:1–15. doi:10.1007/s00424-003-1199-4

    Article  CAS  PubMed  Google Scholar 

  32. Luiken JJ, Coort SL, Willems J, Coumans WA, Bonen A, van der Vusse GJ, Glatz JF (2003) Contraction-induced fatty acid translocase/CD36 translocation in rat cardiac myocytes is mediated through AMP-activated protein kinase signaling. Diabetes 52:1627–1634

    Article  CAS  PubMed  Google Scholar 

  33. Mak KM, Ren C, Ponomarenko A, Cao Q, Lieber CS (2008) Adipose differentiation-related protein is a reliable lipid droplet marker in alcoholic fatty liver of rats. Alcohol Clin Exp Res 32:683–689. doi:10.1111/j.1530-0277.2008.00624.x

    Article  CAS  PubMed  Google Scholar 

  34. McAuliffe JJ, Perry SB, Brooks EE, Ingwall JS (1991) Kinetics of the creatine kinase reaction in neonatal rabbit heart: an empirical analysis of the rate equation. Biochemistry 30:2585–2593

    Article  CAS  PubMed  Google Scholar 

  35. Morillo CA, Klein GJ, Jones DL, Guiraudon CM (1995) Chronic rapid atrial pacing. Structural, functional, and electrophysiological characteristics of a new model of sustained atrial fibrillation. Circulation 91:1588–1595

    Article  CAS  PubMed  Google Scholar 

  36. Muthusamy K, Halbert G, Roberts F (2006) Immunohistochemical staining for adipophilin, perilipin and TIP47. J Clin Pathol 59:1166–1170. doi:10.1136/jcp.2005.033381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Neef S, Dybkova N, Sossalla S, Ort KR, Fluschnik N, Neumann K, Seipelt R, Schondube FA, Hasenfuss G, Maier LS (2010) CaMKII-dependent diastolic SR Ca2+ leak and elevated diastolic Ca2+ levels in right atrial myocardium of patients with atrial fibrillation. Circ Res 106:1134–1144. doi:10.1161/CIRCRESAHA.109.203836

    Article  CAS  PubMed  Google Scholar 

  38. Peters CG, Miller DF, Giovannucci DR (2006) Identification, localization and interaction of SNARE proteins in atrial cardiac myocytes. J Mol Cell Cardiol 40:361–374. doi:10.1016/j.yjmcc.2005.12.007

    Article  CAS  PubMed  Google Scholar 

  39. Raney MA, Turcotte LP (2008) Evidence for the involvement of CaMKII and AMPK in Ca2+ -dependent signaling pathways regulating FA uptake and oxidation in contracting rodent muscle. J Appl Physiol 104:1366–1373. doi:10.1152/japplphysiol.01282.2007

    Article  CAS  PubMed  Google Scholar 

  40. Reil JC, Hohl M, Oberhofer M, Kazakov A, Kaestner L, Mueller P, Adam O, Maack C, Lipp P, Mewis C, Allessie M, Laufs U, Böhm M, Neuberger HR (2010) Cardiac Rac1 overexpression in mice creates a substrate for atrial arrhythmias characterized by structural remodelling. Cardiovasc Res 87:485–493. doi:10.1093/cvr/cvq079

    Article  CAS  PubMed  Google Scholar 

  41. Reilly SN, Jayaram R, Nahar K, Antoniades C, Verheule S, Channon KM, Alp NJ, Schotten U, Casadei B (2011) Atrial sources of reactive oxygen species vary with the duration and substrate of atrial fibrillation: implications for the antiarrhythmic effect of statins. Circulation 124:1107–1117. doi:10.1161/CIRCULATIONAHA.111.029223

    Article  CAS  PubMed  Google Scholar 

  42. Remondino A, Rosenblatt-Velin N, Montessuit C, Tardy I, Papageorgiou I, Dorsaz PA, Jorge-Costa M, Lerch R (2000) Altered expression of proteins of metabolic regulation during remodeling of the left ventricle after myocardial infarction. J Mol Cell Cardiol 32:2025–2034. doi:10.1006/jmcc.2000.1234

    Article  CAS  PubMed  Google Scholar 

  43. Schotten U, Verheule S, Kirchhof P, Goette A (2011) Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev 91:265–325. doi:10.1152/physrev.00031.2009

    Article  PubMed  Google Scholar 

  44. Stuck BJ, Lenski M, Böhm M, Laufs U (2008) Metabolic switch and hypertrophy of cardiomyocytes following treatment with angiotensin II are prevented by AMP-activated protein kinase. J Biol Chem 283:32562–32569. doi:10.1074/jbc.M801904200

    Article  CAS  PubMed  Google Scholar 

  45. Taegtmeyer H, Sen S, Vela D (2010) Return to the fetal gene program: a suggested metabolic link to gene expression in the heart. Ann N Y Acad Sci 1188:191–198. doi:10.1111/j.1749-6632.2009.05100.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Tovar O, Tung L (1992) Electroporation and recovery of cardiac cell membrane with rectangular voltage pulses. Am J Physiol 263:H1128–H1136

    CAS  PubMed  Google Scholar 

  47. Towler MC, Hardie DG (2007) AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 100:328–341. doi:10.1161/01.RES.0000256090.42690.05

    Article  CAS  PubMed  Google Scholar 

  48. Viollet B, Horman S, Leclerc J, Lantier L, Foretz M, Billaud M, Giri S, Andreelli F (2010) AMPK inhibition in health and disease. Crit Rev Biochem Mol Biol 45:276–295. doi:10.3109/10409238.2010.488215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Voigt N, Li N, Wang Q, Wang W, Trafford AW, Abu-Taha I, Sun Q, Wieland T, Ravens U, Nattel S, Wehrens XH, Dobrev D (2012) Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na+ -Ca2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. Circulation 125:2059–2070. doi:10.1161/CIRCULATIONAHA.111.067306

    Article  CAS  PubMed  Google Scholar 

  50. White CW, Holida MD, Marcus ML (1986) Effects of acute atrial fibrillation on the vasodilator reserve of the canine atrium. Cardiovasc Res 20:683–689

    Article  CAS  PubMed  Google Scholar 

  51. White CW, Kerber RE, Weiss HR, Marcus ML (1982) The effects of atrial fibrillation on atrial pressure-volume and flow relationships. Circ Res 51:205–215

    Article  CAS  PubMed  Google Scholar 

  52. Yue L, Feng J, Gaspo R, Li GR, Wang Z, Nattel S (1997) Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Res 81:512–525

    Article  CAS  PubMed  Google Scholar 

  53. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174. doi:10.1172/JCI13505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Zhou YT, Grayburn P, Karim A, Shimabukuro M, Higa M, Baetens D, Orci L, Unger RH (2000) Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci USA 97:1784–1789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ellen Becker, Simone Jäger and Catrin Pittke for their excellent technical assistance. This study was funded by grants of the Deutsche Forschungsgemeinschaft (DFG) to UL, OA, CM, MB), the Deutsche Gesellschaft für Kardiologie (DGK) to ML, the HOMFOR Programm to ML, OA, and the Universität des Saarlandes to ML, OA.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Lenski.

Additional information

To this original contribution an invited editorial is available at doi:10.1007/s00395-015-0498-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenski, M., Schleider, G., Kohlhaas, M. et al. Arrhythmia causes lipid accumulation and reduced glucose uptake. Basic Res Cardiol 110, 40 (2015). https://doi.org/10.1007/s00395-015-0497-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-015-0497-2

Keywords

Navigation