Skip to main content

Advertisement

Log in

Selective inhibition of Cx43 hemichannels by Gap19 and its impact on myocardial ischemia/reperfusion injury

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Connexin-43 (Cx43), a predominant cardiac connexin, forms gap junctions (GJs) that facilitate electrical cell–cell coupling and unapposed/nonjunctional hemichannels that provide a pathway for the exchange of ions and metabolites between cytoplasm and extracellular milieu. Uncontrolled opening of hemichannels in the plasma membrane may be deleterious for the myocardium and blocking hemichannels may confer cardioprotection by preventing ionic imbalance, cell swelling and loss of critical metabolites. Currently, all known hemichannel inhibitors also block GJ channels, thereby disturbing electrical cell–cell communication. Here we aimed to characterize a nonapeptide, called Gap19, derived from the cytoplasmic loop (CL) of Cx43 as a hemichannel blocker and examined its effect on hemichannel currents in cardiomyocytes and its influence in cardiac outcome after ischemia/reperfusion. We report that Gap 19 inhibits Cx43 hemichannels without blocking GJ channels or Cx40/pannexin-1 hemichannels. Hemichannel inhibition is due to the binding of Gap19 to the C-terminus (CT) thereby preventing intramolecular CT–CL interactions. The peptide inhibited Cx43 hemichannel unitary currents in both HeLa cells exogenously expressing Cx43 and acutely isolated pig ventricular cardiomyocytes. Treatment with Gap19 prevented metabolic inhibition-enhanced hemichannel openings, protected cardiomyocytes against volume overload and cell death following ischemia/reperfusion in vitro and modestly decreased the infarct size after myocardial ischemia/reperfusion in mice in vivo. We conclude that preventing Cx43 hemichannel opening with Gap19 confers limited protective effects against myocardial ischemia/reperfusion injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abascal F, Zardoya R (2012) Evolutionary analyses of gap junction protein families. Biochim Biophys Acta Epub ahead of print doi:10.1016/j.bbamem.2012.02.007

  2. Bao X, Lee SC, Reuss L, Altenberg GA (2007) Change in permeant size selectivity by phosphorylation of connexin 43 gap-junctional hemichannels by PKC. Proc Natl Acad Sci USA 104:4919–4924. doi:10.1073/pnas.0603154104

    Article  PubMed  CAS  Google Scholar 

  3. Barth K, Gentsch M, Blasche R, Pfuller A, Parshyna I, Koslowski R, Barth G, Kasper M (2005) Distribution of caveolin-1 and connexin43 in normal and injured alveolar epithelial R3/1 cells. Histochem Cell Biol 123:239–247. doi:10.1007/s00418-004-0727-4

    Article  PubMed  CAS  Google Scholar 

  4. Boengler K, Buechert A, Heinen Y, Roeskes C, Hilfiker-Kleiner D, Heusch G, Schulz R (2008) Cardioprotection by ischemic postconditioning is lost in aged and STAT3-deficient mice. Circ Res 102:131–135. doi:10.1161/CIRCRESAHA.107.164699

    Article  PubMed  CAS  Google Scholar 

  5. Boengler K, Dodoni G, Rodriguez-Sinovas A, Cabestrero A, Ruiz-Meana M, Gres P, Konietzka I, Lopez-Iglesias C, Garcia-Dorado D, Di LF, Heusch G, Schulz R (2005) Connexin 43 in cardiomyocyte mitochondria and its increase by ischemic preconditioning. Cardiovasc Res 67:234–244. doi:10.1016/j.cardiores.2005.04.014

    Article  PubMed  CAS  Google Scholar 

  6. Boengler K, Stahlhofen S, van de Sand A, Gres P, Ruiz-Meana M, Garcia-Dorado D, Heusch G, Schulz R (2009) Presence of connexin 43 in subsarcolemmal, but not in interfibrillar cardiomyocyte mitochondria. Basic Res Cardiol 104:141–147. doi:10.1007/s00395-009-0007-5

    Article  PubMed  CAS  Google Scholar 

  7. Bouvier D, Spagnol G, Chenavas S, Kieken F, Vitrac H, Brownell S, Kellezi A, Forge V, Sorgen PL (2009) Characterization of the structure and intermolecular interactions between the connexin40 and connexin43 carboxyl-terminal and cytoplasmic loop domains. J Biol Chem 284:34257–34271. doi:10.1074/jbc.M109.039594

    Article  PubMed  CAS  Google Scholar 

  8. Bukauskas FF, Kreuzberg MM, Rackauskas M, Bukauskiene A, Bennett MV, Verselis VK, Willecke K (2006) Properties of mouse connexin 30.2 and human connexin 31.9 hemichannels: implications for atrioventricular conduction in the heart. Proc Natl Acad Sci USA 103:9726–9731. doi:10.1073/pnas.0603372103

    Article  PubMed  CAS  Google Scholar 

  9. Carrigan CN, Imperiali B (2005) The engineering of membrane-permeable peptides. Anal Biochem 341:290–298. doi:10.1016/j.ab.2005.03.026

    Article  PubMed  CAS  Google Scholar 

  10. Chen-Izu Y, Moreno AP, Spangler RA (2001) Opposing gates model for voltage gating of gap junction channels. Am J Physiol Cell Physiol 281:C1604–C1613

    PubMed  CAS  Google Scholar 

  11. Clarke TC, Williams OJ, Martin PE, Evans WH (2009) ATP release by cardiac myocytes in a simulated ischaemia model: inhibition by a connexin mimetic and enhancement by an antiarrhythmic peptide. Eur J Pharmacol 605:9–14. doi:10.1016/j.ejphar.2008.12.005

    Article  PubMed  CAS  Google Scholar 

  12. Contreras JE, Saez JC, Bukauskas FF, Bennett MV (2003) Gating and regulation of connexin 43 (Cx43) hemichannels. Proc Natl Acad Sci USA 100:11388–11393. doi:10.1073/pnas.1434298100

    Article  PubMed  CAS  Google Scholar 

  13. Contreras JE, Sanchez HA, Eugenin EA, Speidel D, Theis M, Willecke K, Bukauskas FF, Bennett MV, Saez JC (2002) Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture. Proc Natl Acad Sci USA 99:495–500. doi:10.1073/pnas.012589799

    Article  PubMed  CAS  Google Scholar 

  14. Contreras JE, Sanchez HA, Veliz LP, Bukauskas FF, Bennett MV, Saez JC (2004) Role of connexin-based gap junction channels and hemichannels in ischemia-induced cell death in nervous tissue. Brain Res Brain Res Rev 47:290–303. doi:10.1016/j.brainresrev.2004.08.002

    Article  PubMed  CAS  Google Scholar 

  15. Danik SB, Liu F, Zhang J, Suk HJ, Morley GE, Fishman GI, Gutstein DE (2004) Modulation of cardiac gap junction expression and arrhythmic susceptibility. Circ Res 95:1035–1041. doi:10.1161/01.RES.0000148664.33695.2a

    Article  PubMed  CAS  Google Scholar 

  16. De Bock M, Culot M, Wang N, Bol M, Decrock E, De Vuyst E, da Costa A, Dauwe I, Vinken M, Simon AM, Rogiers V, De Ley G, Evans WH, Bultynck G, Dupont G, Cecchelli R, Leybaert L (2011) Connexin channels provide a target to manipulate brain endothelial calcium dynamics and blood-brain barrier permeability. J Cereb Blood Flow Metab 31:1942–1957. doi:10.1038/jcbfm.2011.86

    Article  PubMed  Google Scholar 

  17. De Vuyst E, Decrock E, Cabooter L, Dubyak GR, Naus CC, Evans WH, Leybaert L (2006) Intracellular calcium changes trigger connexin 32 hemichannel opening. EMBO J 25:34–44. doi:10.1038/sj.emboj.7600908

    Article  PubMed  Google Scholar 

  18. De Vuyst E, Decrock E, De Bock M, Yamasaki H, Naus CC, Evans WH, Leybaert L (2007) Connexin hemichannels and gap junction channels are differentially influenced by lipopolysaccharide and basic fibroblast growth factor. Mol Biol Cell 18:34–46. doi:10.1091/mbc.E06-03-0182

    Article  PubMed  Google Scholar 

  19. De Vuyst E, Wang N, Decrock E, De Bock M, Vinken M, Van Moorhem M, Lai C, Culot M, Rogiers V, Cecchelli R, Naus CC, Evans WH, Leybaert L (2009) Ca(2 +) regulation of connexin 43 hemichannels in C6 glioma and glial cells. Cell Calcium 46:176–187. doi:10.1016/j.ceca.2009.07.002

    Article  PubMed  Google Scholar 

  20. de Wit C, Griffith TM (2010) Connexins and gap junctions in the EDHF phenomenon and conducted vasomotor responses. Pflugers Arch 459:897–914. doi:10.1007/s00424-010-0830-4

    Article  PubMed  Google Scholar 

  21. Decrock E, De Vuyst E, Vinken M, Van Moorhem M, Vranckx K, Wang N, Van LL, De Bock M, D’Herde K, Lai CP, Rogiers V, Evans WH, Naus CC, Leybaert L (2009) Connexin 43 hemichannels contribute to the propagation of apoptotic cell death in a rat C6 glioma cell model. Cell Death Differ 16:151–163. doi:10.1038/cdd.2008.138

    Article  PubMed  CAS  Google Scholar 

  22. Duffy HS, Sorgen PL, Girvin ME, O’Donnell P, Coombs W, Taffet SM, Delmar M, Spray DC (2002) pH-dependent intramolecular binding and structure involving Cx43 cytoplasmic domains. J Biol Chem 277:36706–36714. doi:10.1074/jbc.M207016200

    Article  PubMed  CAS  Google Scholar 

  23. Elenes S, Martinez AD, Delmar M, Beyer EC, Moreno AP (2001) Heterotypic docking of Cx43 and Cx45 connexons blocks fast voltage gating of Cx43. Biophys J 81:1406–1418. doi:10.1016/S0006-3495(01)75796-7

    Article  PubMed  CAS  Google Scholar 

  24. Evans WH, Boitano S (2001) Connexin mimetic peptides: specific inhibitors of gap-junctional intercellular communication. Biochem Soc Trans 29:606–612

    Article  PubMed  Google Scholar 

  25. Evans WH, Bultynck G, Leybaert L (2012) Manipulating connexin communication channels: use of peptidomimetics and the translational outputs. J Membr Biol 245:437–449. doi:10.1007/s00232-012-9488-5

    Article  PubMed  CAS  Google Scholar 

  26. Evans WH, De VE, Leybaert L (2006) The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem J 397:1–14. doi:10.1042/BJ20060175

    Article  PubMed  CAS  Google Scholar 

  27. Harris AL (2001) Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys 34:325–472

    PubMed  CAS  Google Scholar 

  28. Hawat G, Benderdour M, Rousseau G, Baroudi G (2010) Connexin 43 mimetic peptide Gap26 confers protection to intact heart against myocardial ischemia injury. Pflugers Arch 460:583–592. doi:10.1007/s00424-010-0849-6

    Article  PubMed  CAS  Google Scholar 

  29. Hawat G, Helie P, Baroudi G (2012) Single intravenous low-dose injections of connexin 43 mimetic peptides protect ischemic heart in vivo against myocardial infarction. J Mol Cell Cardiol 53:559–566. doi:10.1016/j.yjmcc.2012.07.008

    Article  PubMed  CAS  Google Scholar 

  30. Heinzel FR, Luo Y, Li X, Boengler K, Buechert A, Garcia-Dorado D, Di LF, Schulz R, Heusch G (2005) Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Circ Res 97:583–586. doi:10.1161/01.RES.0000181171.65293.65

    Article  PubMed  CAS  Google Scholar 

  31. Hirst-Jensen BJ, Sahoo P, Kieken F, Delmar M, Sorgen PL (2007) Characterization of the pH-dependent interaction between the gap junction protein connexin43 carboxyl terminus and cytoplasmic loop domains. J Biol Chem 282:5801–5813. doi:10.1074/jbc.M605233200

    Article  PubMed  CAS  Google Scholar 

  32. Jansen JA, van Veen TA, de Bakker JM, van Rijen HV (2010) Cardiac connexins and impulse propagation. J Mol Cell Cardiol 48:76–82. doi:10.1016/j.yjmcc.2009.08.018

    Article  PubMed  CAS  Google Scholar 

  33. Johansen D, Cruciani V, Sundset R, Ytrehus K, Mikalsen SO (2011) Ischemia induces closure of gap junctional channels and opening of hemichannels in heart-derived cells and tissue. Cell Physiol Biochem 28:103–114. doi:10.1159/000331719

    Article  PubMed  CAS  Google Scholar 

  34. John SA, Kondo R, Wang SY, Goldhaber JI, Weiss JN (1999) Connexin-43 hemichannels opened by metabolic inhibition. J Biol Chem 274:236–240

    Article  PubMed  CAS  Google Scholar 

  35. Kalcheva N, Qu J, Sandeep N, Garcia L, Zhang J, Wang Z, Lampe PD, Suadicani SO, Spray DC, Fishman GI (2007) Gap junction remodeling and cardiac arrhythmogenesis in a murine model of oculodentodigital dysplasia. Proc Natl Acad Sci USA 104:20512–20516. doi:10.1073/pnas.0705472105

    Article  PubMed  CAS  Google Scholar 

  36. Kienitz MC, Bender K, Dermietzel R, Pott L, Zoidl G (2011) Pannexin 1 constitutes the large conductance cation channel of cardiac myocytes. J Biol Chem 286:290–298. doi:10.1074/jbc.M110.163477

    Article  PubMed  CAS  Google Scholar 

  37. Kim DY, Kam Y, Koo SK, Joe CO (1999) Gating connexin 43 channels reconstituted in lipid vesicles by mitogen-activated protein kinase phosphorylation. J Biol Chem 274:5581–5587

    Article  PubMed  CAS  Google Scholar 

  38. Kondo RP, Wang SY, John SA, Weiss JN, Goldhaber JI (2000) Metabolic inhibition activates a non-selective current through connexin hemichannels in isolated ventricular myocytes. J Mol Cell Cardiol 32:1859–1872. doi:10.1006/jmcc.2000.1220

    Article  PubMed  CAS  Google Scholar 

  39. Lai A, Le DN, Paznekas WA, Gifford WD, Jabs EW, Charles AC (2006) Oculodentodigital dysplasia connexin43 mutations result in non-functional connexin hemichannels and gap junctions in C6 glioma cells. J Cell Sci 119:532–541. doi:10.1242/jcs.02770

    Article  PubMed  CAS  Google Scholar 

  40. Li X, Heinzel FR, Boengler K, Schulz R, Heusch G (2004) Role of connexin 43 in ischemic preconditioning does not involve intercellular communication through gap junctions. J Mol Cell Cardiol 36:161–163

    Article  PubMed  CAS  Google Scholar 

  41. Locke D, Liu J, Harris AL (2005) Lipid rafts prepared by different methods contain different connexin channels, but gap junctions are not lipid rafts. Biochemistry 44:13027–13042. doi:10.1021/bi050495a

    Article  PubMed  CAS  Google Scholar 

  42. Locovei S, Bao L, Dahl G (2006) Pannexin 1 in erythrocytes: function without a gap. Proc Natl Acad Sci USA 103:7655–7659. doi:10.1073/pnas.0601037103

    Article  PubMed  CAS  Google Scholar 

  43. Maass K, Shibayama J, Chase SE, Willecke K, Delmar M (2007) C-terminal truncation of connexin43 changes number, size, and localization of cardiac gap junction plaques. Circ Res 101:1283–1291. doi:10.1161/CIRCRESAHA.107.162818

    Article  PubMed  CAS  Google Scholar 

  44. Miro-Casas E, Ruiz-Meana M, Agullo E, Stahlhofen S, Rodriguez-Sinovas A, Cabestrero A, Jorge I, Torre I, Vazquez J, Boengler K, Schulz R, Heusch G, Garcia-Dorado D (2009) Connexin43 in cardiomyocyte mitochondria contributes to mitochondrial potassium uptake. Cardiovasc Res 83:747–756. doi:10.1093/cvr/cvp157

    Article  PubMed  CAS  Google Scholar 

  45. Miura T, Miki T, Yano T (2010) Role of the gap junction in ischemic preconditioning in the heart. Am J Physiol Heart Circ Physiol 298:H1115–H1125. doi:10.1152/ajpheart.00879.2009

    Article  PubMed  CAS  Google Scholar 

  46. Miura T, Ohnuma Y, Kuno A, Tanno M, Ichikawa Y, Nakamura Y, Yano T, Miki T, Sakamoto J, Shimamoto K (2004) Protective role of gap junctions in preconditioning against myocardial infarction. Am J Physiol Heart Circ Physiol 286:H214–H221. doi:10.1152/ajpheart.00441.2003

    Article  PubMed  CAS  Google Scholar 

  47. Oviedo-Orta E, Errington RJ, Evans WH (2002) Gap junction intercellular communication during lymphocyte transendothelial migration. Cell Biol Int 26:253–263. doi:10.1006/cbir.2001.0840

    Article  PubMed  CAS  Google Scholar 

  48. Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25:5071–5082. doi:10.1038/sj.emboj.7601378

    Article  PubMed  CAS  Google Scholar 

  49. Ponsaerts R, De Vuyst E, Retamal M, D’hondt C, Vermeire D, Wang N, De Smedt H, Zimmermann P, Himpens B, Vereecke J, Leybaert L, Bultynck G (2010) Intramolecular loop/tail interactions are essential for connexin 43-hemichannel activity. FASEB J 24:4378–4395. doi:10.1096/fj.09-153007

    Article  PubMed  CAS  Google Scholar 

  50. Ponsaerts R, Wang N, Himpens B, Leybaert L, Bultynck G (2012) The contractile system as a negative regulator of the connexin 43 hemichannel. Biol Cell 104:367–377. doi:10.1111/boc.201100079

    Article  PubMed  CAS  Google Scholar 

  51. Ramachandran S, Xie LH, John SA, Subramaniam S, Lal R (2007) A novel role for connexin hemichannel in oxidative stress and smoking-induced cell injury. PLoS One 2:e712. doi:10.1371/journal.pone.0000712

    Article  PubMed  Google Scholar 

  52. Retamal MA, Cortes CJ, Reuss L, Bennett MV, Saez JC (2006) S-nitrosylation and permeation through connexin 43 hemichannels in astrocytes: induction by oxidant stress and reversal by reducing agents. Proc Natl Acad Sci USA 103:4475–4480. doi:10.1073/pnas.0511118103

    Article  PubMed  CAS  Google Scholar 

  53. Retamal MA, Schalper KA, Shoji KF, Bennett MV, Saez JC (2007) Opening of connexin 43 hemichannels is increased by lowering intracellular redox potential. Proc Natl Acad Sci USA 104:8322–8327. doi:10.1073/pnas.0702456104

    Article  PubMed  CAS  Google Scholar 

  54. Retamal MA, Schalper KA, Shoji KF, Orellana JA, Bennett MV, Saez JC (2007) Possible involvement of different connexin43 domains in plasma membrane permeabilization induced by ischemia-reperfusion. J Membr Biol 218:49–63. doi:10.1007/s00232-007-9043-y

    Article  PubMed  CAS  Google Scholar 

  55. Rhett JM, Jourdan J, Gourdie RG (2011) Connexin 43 connexon to gap junction transition is regulated by zonula occludens-1. Mol Biol Cell 22:1516–1528. doi:10.1091/mbc.E10-06-0548

    Article  PubMed  CAS  Google Scholar 

  56. Rodriguez-Sinovas A, Boengler K, Cabestrero A, Gres P, Morente M, Ruiz-Meana M, Konietzka I, Miro E, Totzeck A, Heusch G, Schulz R, Garcia-Dorado D (2006) Translocation of connexin 43 to the inner mitochondrial membrane of cardiomyocytes through the heat shock protein 90-dependent TOM pathway and its importance for cardioprotection. Circ Res 99:93–101. doi:10.1161/01.RES.0000230315.56904.de

    Article  PubMed  CAS  Google Scholar 

  57. Rodriguez-Sinovas A, Sanchez JA, Fernandez-Sanz C, Ruiz-Meana M, Garcia-Dorado D (2012) Connexin and pannexin as modulators of myocardial injury. Biochim Biophys Acta 1818:1962–1970. doi:10.1016/j.bbamem.2011.07.041

    Article  PubMed  CAS  Google Scholar 

  58. Saez JC, Schalper KA, Retamal MA, Orellana JA, Shoji KF, Bennett MV (2010) Cell membrane permeabilization via connexin hemichannels in living and dying cells. Exp Cell Res 316:2377–2389. doi:10.1016/j.yexcr.2010.05.026

    Article  PubMed  CAS  Google Scholar 

  59. Sanchez HA, Orellana JA, Verselis VK, Saez JC (2009) Metabolic inhibition increases activity of connexin-32 hemichannels permeable to Ca2+ in transfected HeLa cells. Am J Physiol Cell Physiol 297:C665–C678. doi:10.1152/ajpcell.00200.2009

    Article  PubMed  CAS  Google Scholar 

  60. Sanchez JA, Rodriguez-Sinovas A, Fernandez-Sanz C, Ruiz-Meana M, Garcia-Dorado D (2011) Effects of a reduction in the number of gap junction channels or in their conductance on ischemia-reperfusion arrhythmias in isolated mouse hearts. Am J Physiol Heart Circ Physiol 301:H2442–H2453. doi:10.1152/ajpheart.00540.2011

    Article  PubMed  CAS  Google Scholar 

  61. Schulz R, Boengler K, Totzeck A, Luo Y, Garcia-Dorado D, Heusch G (2007) Connexin 43 in ischemic pre- and postconditioning. Heart Fail Rev 12:261–266. doi:10.1007/s10741-007-9032-3

    Article  PubMed  CAS  Google Scholar 

  62. Schwanke U, Konietzka I, Duschin A, Li X, Schulz R, Heusch G (2002) No ischemic preconditioning in heterozygous connexin43-deficient mice. Am J Physiol Heart Circ Physiol 283:H1740–H1742. doi:10.1152/ajpheart.00442.2002

    PubMed  CAS  Google Scholar 

  63. Seki A, Coombs W, Taffet SM, Delmar M (2004) Loss of electrical communication, but not plaque formation, after mutations in the cytoplasmic loop of connexin43. Heart Rhythm 1:227–233. doi:10.1016/j.hrthm.2004.03.066

    Article  PubMed  Google Scholar 

  64. Severs NJ, Bruce AF, Dupont E, Rothery S (2008) Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc Res 80:9–19. doi:10.1093/cvr/cvn133

    Article  PubMed  CAS  Google Scholar 

  65. Shibayama J, Paznekas W, Seki A, Taffet S, Jabs EW, Delmar M, Musa H (2005) Functional characterization of connexin43 mutations found in patients with oculodentodigital dysplasia. Circ Res 96:e83–e91. doi:10.1161/01.RES.0000168369.79972.d2

    Article  PubMed  CAS  Google Scholar 

  66. Shintani-Ishida K, Uemura K, Yoshida K (2007) Hemichannels in cardiomyocytes open transiently during ischemia and contribute to reperfusion injury following brief ischemia. Am J Physiol Heart Circ Physiol 293:H1714–H1720. doi:10.1152/ajpheart.00022.2007

    Article  PubMed  CAS  Google Scholar 

  67. Silverman WR, de Rivero Vaccari JP, Locovei S, Qiu F, Carlsson SK, Scemes E, Keane RW, Dahl G (2009) The pannexin 1 channel activates the inflammasome in neurons and astrocytes. J Biol Chem 284:18143–18151. doi:10.1074/jbc.M109.004804

    Google Scholar 

  68. Spray DC, Ye ZC, Ransom BR (2006) Functional connexin “hemichannels”: a critical appraisal. Glia 54:758–773. doi:10.1002/glia.20429

    Article  PubMed  Google Scholar 

  69. Stankovicova T, Szilard M, De S,I, Sipido KR (2000) M cells and transmural heterogeneity of action potential configuration in myocytes from the left ventricular wall of the pig heart. Cardiovasc Res 45:952–960

    Article  PubMed  CAS  Google Scholar 

  70. Thompson RJ, Jackson MF, Olah ME, Rungta RL, Hines DJ, Beazely MA, MacDonald JF, MacVicar BA (2008) Activation of pannexin-1 hemichannels augments aberrant bursting in the hippocampus. Science 322:1555–1559. doi:10.1126/science.1165209

    Article  PubMed  CAS  Google Scholar 

  71. Tribulova N, Seki S, Radosinska J, Kaplan P, Babusikova E, Knezl V, Mochizuki S (2009) Myocardial Ca2+ handling and cell-to-cell coupling, key factors in prevention of sudden cardiac death. Can J Physiol Pharmacol 87:1120–1129. doi:10.1139/Y09-106

    Article  PubMed  CAS  Google Scholar 

  72. Unwin PN, Ennis PD (1983) Calcium-mediated changes in gap junction structure: evidence from the low angle X-ray pattern. J Cell Biol 97:1459–1466

    Article  PubMed  CAS  Google Scholar 

  73. Unwin PN, Zampighi G (1980) Structure of the junction between communicating cells. Nature 283:545–549

    Article  PubMed  CAS  Google Scholar 

  74. Veenstra RD, DeHaan RL (1986) Measurement of single channel currents from cardiac gap junctions. Science 233:972–974

    Article  PubMed  CAS  Google Scholar 

  75. Vergara L, Bao X, Bello-Reuss E, Reuss L (2003) Do connexin 43 gap-junctional hemichannels activate and cause cell damage during ATP depletion of renal-tubule cells? Acta Physiol Scand 179:33–38

    Article  PubMed  CAS  Google Scholar 

  76. Wang J, Ma M, Locovei S, Keane RW, Dahl G (2007) Modulation of membrane channel currents by gap junction protein mimetic peptides: size matters. Am J Physiol Cell Physiol 293:C1112–C1119. doi:10.1152/ajpcell.00097.2007

    Article  PubMed  CAS  Google Scholar 

  77. Wang N, De Bock M, Antoons G, Gadicherla AK, Bol M, Decrock E, Evans WH, Sipido KR, Bukauskas FF, Leybaert L (2012) Connexin mimetic peptides inhibit Cx43 hemichannel opening triggered by voltage and intracellular Ca2+ elevation. Basic Res Cardiol 107:304. doi:10.1007/s00395-012-0304-2

    Google Scholar 

  78. Warner A, Clements DK, Parikh S, Evans WH, DeHaan RL (1995) Specific motifs in the external loops of connexin proteins can determine gap junction formation between chick heart myocytes. J Physiol 488(Pt 3):721–728

    PubMed  CAS  Google Scholar 

  79. Wright CS, van Steensel MA, Hodgins MB, Martin PE (2009) Connexin mimetic peptides improve cell migration rates of human epidermal keratinocytes and dermal fibroblasts in vitro. Wound Repair Regen 17:240–249. doi:10.1111/j.1524-475X.2009.00471.x

    Article  PubMed  Google Scholar 

  80. Yang XM, Liu Y, Liu Y, Tandon N, Kambayashi J, Downey JM, Cohen MV (2010) Attenuation of infarction in cynomolgus monkeys: preconditioning and postconditioning. Basic Res Cardiol 105:119–128. doi:10.1007/s00395-009-0050-2

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks to K. Leurs, K. Vermeulen and K. Welkenhuyzen for superb technical support. We express our gratitude to Dr. B. Himpens for support, to Dr. P. Zimmermann for the use of the Biacore 2000, to Dr. P. Sorgen for providing the pGEX6p2-Cx43CT plasmid, to Dr. G. Antoons for support with experiments on pig myocytes, and to Dr. D. Laird and Dr. S. Penuela for providing the anti-Panx1 antibody. We are very grateful to A. Gadicherla and Dr. B. Nilius for critically reading and commenting the manuscript. Research supported by the Fund for Scientific Research Flanders, Belgium (FWO, grant nos. G.0354.07, G.0140.08, 3G.0134.09 and G.0298.11 N to L.L. and G.0545.08 to G.B.), the Interuniversity Attraction Poles Program (Belgian Science Policy, project P6/31 and P7/10 to K.R.S and L.L., and P7 to J.T. and G.B.), the Concerted Actions program at KULeuven (grant no. GOA/09/012 to G.B.), the German Research Foundation (Schu 843/7-2 to R.S.), the BFH grant (grant no. PG/01/1298 to W.H.E), the Heart & Stroke Foundation of BC & Yukon and the Canadian Institutes of Health Research to C.C.N. and NIH grants (HL084464 and NS072238 to F.F.B.).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Leybaert.

Additional information

N. Wang, E. De Vuyst, R. Ponsaerts contributed equally. G. Bultynck, L. Leybaert share senior authorship.

T. Miura, Sapporo, Japan served as guest editor for the manuscript and was responsible for all editorial decisions, including the selection of reviewers. The policy applies to all manuscripts with authors from the editor’s institution.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1472 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, N., De Vuyst, E., Ponsaerts, R. et al. Selective inhibition of Cx43 hemichannels by Gap19 and its impact on myocardial ischemia/reperfusion injury. Basic Res Cardiol 108, 309 (2013). https://doi.org/10.1007/s00395-012-0309-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-012-0309-x

Keywords

Navigation