Skip to main content
Log in

Flavonoid intake from fruit and vegetables during adolescence is prospectively associated with a favourable risk factor profile for type 2 diabetes in early adulthood

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Flavonoid consumption during adolescence could contribute to preventing adult onset of type 2 diabetes mellitus. We investigated the prospective association between habitual intake of flavonoids from fruit and vegetables (FlavFV) during adolescence and risk markers of type 2 diabetes in early adulthood.

Methods

This analysis included participants of the DONALD Study, who had provided a fasting blood sample in adulthood (18–39 years), data on FlavFV-intake during adolescence (females: 9–15 years, males: 10–16 years) and relevant covariates. Habitual FlavFV-intake was either estimated using repeated 3-day weighed dietary records (n = 268), or the validated biomarker hippuric acid (uHA)-excretion in repeated 24-h urine samples (n = 241). Multivariable linear regressions were performed to analyse the prospective associations of FlavFV or uHA with homeostasis model assessment insulin sensitivity (HOMA2-%S), hepatic steatosis index (HSI), fatty liver index (FLI) and a pro-inflammatory score.

Results

Higher FlavFV-intake was independently related to higher HOMA2-%S among females (Ptrend = 0.03), but not among males. Both FlavFV-intake and uHA-excretion were inversely associated with HSI (Ptrend < 0.0001 and Ptrend = 0.02, respectively) and the pro-inflammatory score (Ptrend = 0.02 and Ptrend = 0.008, respectively), but not with FLI.

Conclusions

Our data indicate that flavonoid consumption from fruit and vegetables during adolescence is associated with a favourable risk factor profile for type 2 diabetes in early adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Liu Y-J, Zhan J, Liu X-L et al (2014) Dietary flavonoids intake and risk of type 2 diabetes: a meta-analysis of prospective cohort studies. Clin Nutr 33(1):59–63. https://doi.org/10.1016/j.clnu.2013.03.011

    Article  CAS  PubMed  Google Scholar 

  2. Zhang P-W, Chen F-X, Li D et al (2015) A CONSORT-compliant, randomized, double-blind, placebo-controlled pilot trial of purified anthocyanin in patients with nonalcoholic fatty liver disease. Medicine 94(20):e758. https://doi.org/10.1097/MD.0000000000000758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Suda I, Ishikawa F, Hatakeyama M et al (2008) Intake of purple sweet potato beverage affects on serum hepatic biomarker levels of healthy adult men with borderline hepatitis. Eur J Clin Nutr 62(1):60–67. https://doi.org/10.1038/sj.ejcn.1602674

    Article  CAS  PubMed  Google Scholar 

  4. Huang H, Chen G, Liao D et al (2016) Effects of berries consumption on cardiovascular risk factors: a meta-analysis with trial sequential analysis of randomized controlled trials. Sci Rep 6:23625. https://doi.org/10.1038/srep23625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Peluso I, Raguzzini A, Serafini M (2013) Effect of flavonoids on circulating levels of TNF-alpha and IL-6 in humans: a systematic review and meta-analysis. Mol Nutr Food Res 57(5):784–801. https://doi.org/10.1002/mnfr.201200721

    Article  CAS  PubMed  Google Scholar 

  6. Kim G, Giannini C, Pierpont B et al (2012) Longitudinal effects of MRI-measured hepatic steatosis on biomarkers of glucose homeostasis and hepatic apoptosis in obese youth. Diabetes Care 36(1):130–136. https://doi.org/10.2337/dc12-0277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kempf K, Rathmann W, Herder C (2008) Impaired glucose regulation and type 2 diabetes in children and adolescents. Diabetes Metab Res Rev 24(6):427–437. https://doi.org/10.1002/dmrr.869

    Article  CAS  PubMed  Google Scholar 

  8. Faienza MF, Wang DQH, Frühbeck G et al (2016) The dangerous link between childhood and adulthood predictors of obesity and metabolic syndrome. Intern Emerg Med 11(2):175–182. https://doi.org/10.1007/s11739-015-1382-6

    Article  PubMed  Google Scholar 

  9. Alberga AS, Sigal RJ, Goldfield G et al (2012) Overweight and obese teenagers: why is adolescence a critical period? Pediatr Obes 7(4):261–273. https://doi.org/10.1111/j.2047-6310.2011.00046.x

    Article  CAS  PubMed  Google Scholar 

  10. Vogiatzoglou A, Heuer T, Mulligan AA et al (2014) Estimated dietary intakes and sources of flavanols in the German population (German National Nutrition Survey II). Eur J Nutr 53(2):635–643. https://doi.org/10.1007/s00394-013-0572-0

    Article  CAS  PubMed  Google Scholar 

  11. Linseisen J, Rohrmann S (2008) Biomarkers of dietary intake of flavonoids and phenolic acids for studying diet-cancer relationship in humans. Eur J Nutr 47(Suppl 2):60–68. https://doi.org/10.1007/s00394-008-2007-x

    Article  CAS  PubMed  Google Scholar 

  12. Jenab M, Slimani N, Bictash M et al (2009) Biomarkers in nutritional epidemiology: applications, needs and new horizons. Hum Genet 125(5–6):507–525. https://doi.org/10.1007/s00439-009-0662-5

    Article  PubMed  Google Scholar 

  13. Penczynski KJ, Krupp D, Bring A et al (2017) Relative validation of 24-h urinary hippuric acid excretion as a biomarker for dietary flavonoid intake from fruit and vegetables in healthy adolescents. Eur J Nutr 56(2):757–766. https://doi.org/10.1007/s00394-015-1121-9

    Article  CAS  PubMed  Google Scholar 

  14. Kroke A, Manz F, Kersting M et al (2004) The DONALD Study. Eur J Nutr 43(1):45–54. https://doi.org/10.1007/s00394-004-0445-7

    Article  PubMed  Google Scholar 

  15. Sichert-Hellert W, Kersting M, Schoch G (1998) Underreporting of energy intake in 1 to 18 year old German children and adolescents. Z Ernahrungswiss 37(3):242–251

    Article  CAS  PubMed  Google Scholar 

  16. Sichert-Hellert W, Kersting M, Chahda C et al (2007) German food composition database for dietary evaluations in children and adolescents. J Food Compost Anal 20(1):63–70. https://doi.org/10.1016/j.jfca.2006.05.004

    Article  Google Scholar 

  17. Remer T, Neubert A, Maser-Gluth C (2002) Anthropometry-based reference values for 24-h urinary creatinine excretion during growth and their use in endocrine and nutritional research. Am J Clin Nutr 75:561–569

    Article  CAS  PubMed  Google Scholar 

  18. Tomokuni K, Ogata M (1972) Direct colorimetric determination of hippuric acid in urine. Clin Chem 18(4):349–351

    CAS  PubMed  Google Scholar 

  19. Wallace TM, Levy JC, Matthews DR (2004) Use and abuse of HOMA modeling. Diabetes Care 27(6):1487–1495

    Article  PubMed  Google Scholar 

  20. Lee J-H, Kim D, Kim HJ et al (2010) Hepatic steatosis index: a simple screening tool reflecting nonalcoholic fatty liver disease. Digestive Liver Disease 42(7):503–508. https://doi.org/10.1016/j.dld.2009.08.002

    Article  CAS  PubMed  Google Scholar 

  21. Bedogni G, Bellentani S, Miglioli L et al (2006) The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol 6(1):33. https://doi.org/10.1186/1471-230X-6-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Calder PC, Ahluwalia N, Albers R et al (2013) A consideration of biomarkers to be used for evaluation of inflammation in human nutritional studies. Br J Nutr 109(Suppl 1):S1-34. https://doi.org/10.1017/S0007114512005119

    Article  PubMed  Google Scholar 

  23. Kromeyer-Hauschild K, Wabitsch M, Kunze D et al (2001) Perzentile für den body-mass-index für das Kindes- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Monatsschrift Kinderheilkunde 149(8):807–818. https://doi.org/10.1007/s001120170107

    Article  Google Scholar 

  24. Cole TJ, Bellizzi MC, Flegal KM et al (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320(7244):1240–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Taylor TP, Wang W, Shrayyef MZ et al (2006) Glomerular filtration rate can be accurately predicted using lean mass measured by dual-energy X-ray absorptiometry. Nephrol Dial Transplant 21(1):84–87. https://doi.org/10.1093/ndt/gfi102

    Article  PubMed  Google Scholar 

  26. Jacques PF, Cassidy A, Rogers G et al (2013) Higher dietary flavonol intake is associated with lower incidence of type 2 diabetes. J Nutr 143(9):1474–1480. https://doi.org/10.3945/jn.113.177212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun Q, Wedick NM, Tworoger SS et al (2015) Urinary excretion of select dietary polyphenol metabolites is associated with a lower risk of type 2 diabetes in proximate but not remote follow-up in a prospective investigation in 2 cohorts of US women. J Nutr 145(6):1280–1288. https://doi.org/10.3945/jn.114.208736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zamora-Ros R, Forouhi NG, Sharp SJ et al (2013) The association between dietary flavonoid and lignan intakes and incident type 2 diabetes in European populations: the EPIC-InterAct study. Diabetes Care 36(12):3961–3970. https://doi.org/10.2337/dc13-0877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cardoso Chaves O, Franceschini SdCC, Rocha Ribeiro M S et al (2013) Anthropometric and biochemical parameters in adolescents and their relationship with eating habits and household food availability. Nutr Hosp 28(4):1352–1356. https://doi.org/10.3305/nh.2013.28.4.6467

    Article  PubMed  Google Scholar 

  30. Cook LT, O’Reilly GA, Goran MI et al (2014) Vegetable consumption is linked to decreased visceral and liver fat and improved insulin resistance in overweight latino youth. J Acad Nutr Diet 114(11):1776–1783. https://doi.org/10.1016/j.jand.2014.01.017

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jennings A, Welch AA, Spector T et al (2014) Intakes of anthocyanins and flavones are associated with biomarkers of insulin resistance and inflammation in women. J Nutr 144(2):202–208. https://doi.org/10.3945/jn.113.184358

    Article  CAS  PubMed  Google Scholar 

  32. Guo H, Zhong R, Liu Y et al (2014) Effects of bayberry juice on inflammatory and apoptotic markers in young adults with features of non-alcoholic fatty liver disease. Nutrition 30(2):198–203. https://doi.org/10.1016/j.nut.2013.07.023

    Article  CAS  PubMed  Google Scholar 

  33. Habauzit V, Verny M-A, Milenkovic D et al (2015) Flavanones protect from arterial stiffness in postmenopausal women consuming grapefruit juice for 6 mo: a randomized, controlled, crossover trial. Am J Clin Nutr 102(1):66–74. https://doi.org/10.3945/ajcn.114.104646

    Article  CAS  PubMed  Google Scholar 

  34. Dohadwala MM, Hamburg NM, Holbrook M et al (2010) Effects of concord grape juice on ambulatory blood pressure in prehypertension and stage 1 hypertension. Am J Clin Nutr 92(5):1052–1059. https://doi.org/10.3945/ajcn.2010.29905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stull AJ, Cash KC, Johnson WD et al (2010) Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. J Nutr 140(10):1764–1768. https://doi.org/10.3945/jn.110.125336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stull AJ, Cash KC, Champagne CM et al (2015) Blueberries improve endothelial function, but not blood pressure, in adults with metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial. Nutrients 7(6):4107–4123. https://doi.org/10.3390/nu7064107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stote KS, Sweeney MI, Kean T et al (2017) The effects of 100% wild blueberry (Vaccinium angustifolium) juice consumption on cardiometablic biomarkers: a randomized, placebo-controlled, crossover trial in adults with increased risk for type 2 diabetes. BMC Nutr 3(1):524. https://doi.org/10.1186/s40795-017-0164-0

    Article  Google Scholar 

  38. Novotny JA, Baer DJ, Khoo C et al (2015) Cranberry juice consumption lowers markers of cardiometabolic risk, including blood pressure and circulating C-reactive protein, triglyceride, and glucose concentrations in adults. J Nutr 145(6):1185–1193. https://doi.org/10.3945/jn.114.203190

    Article  CAS  PubMed  Google Scholar 

  39. Dohadwala MM, Holbrook M, Hamburg NM et al (2011) Effects of cranberry juice consumption on vascular function in patients with coronary artery disease. Am J Clin Nutr 93(5):934–940. https://doi.org/10.3945/ajcn.110.004242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rangel-Huerta OD, Aguilera CM, Martin MV et al (2015) Normal or high polyphenol concentration in orange juice affects antioxidant activity, blood pressure, and body weight in obese or overweight adults. J Nutr 145(8):1808–1816. https://doi.org/10.3945/jn.115.213660

    Article  CAS  PubMed  Google Scholar 

  41. Paquette M, Medina Larque AS, Weisnagel SJ et al (2017) Strawberry and cranberry polyphenols improve insulin sensitivity in insulin-resistant, non-diabetic adults: a parallel, double-blind, controlled and randomised clinical trial. Br J Nutr 117(4):519–531. https://doi.org/10.1017/S0007114517000393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Menezes R, Rodriguez-Mateos A, Kaltsatou A et al. (2017) Impact of flavonols on cardiometabolic biomarkers: a meta-analysis of randomized controlled human trials to explore the role of inter-individual variability. Nutrients 9(2). https://doi.org/10.3390/nu9020117

  43. Mello VD de, Lankinen MA, Lindström J et al (2017) Fasting serum hippuric acid is elevated after bilberry (Vaccinium myrtillus) consumption and associates with improvement of fasting glucose levels and insulin secretion in persons at high risk of developing type 2 diabetes. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201700019

    Article  PubMed  Google Scholar 

  44. Lee D-H, Steffen LM, Jacobs DR Jr (2004) Association between serum gamma-glutamyltransferase and dietary factors: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Clin Nutr 79(4):600–605

    Article  CAS  PubMed  Google Scholar 

  45. Cassidy A, Rogers G, Peterson JJ et al (2015) Higher dietary anthocyanin and flavonol intakes are associated with anti-inflammatory effects in a population of US adults. Am J Clin Nutr 102(1):172–181. https://doi.org/10.3945/ajcn.115.108555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Landberg R, Sun Q, Rimm EB et al (2011) Selected dietary flavonoids are associated with markers of inflammation and endothelial dysfunction in U.S. women. J Nutr 141(4):618–625. https://doi.org/10.3945/jn.110.133843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Holt EM, Steffen LM, Moran A et al (2009) Fruit and vegetable consumption and its relation to markers of inflammation and oxidative stress in adolescents. J Am Diet Assoc 109(3):414–421. https://doi.org/10.1016/j.jada.2008.11.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chun OK, Chung S-J, Claycombe KJ et al (2008) Serum C-reactive protein concentrations are inversely associated with dietary flavonoid intake in U.S. adults. J Nutr 138(4):753–760

    Article  CAS  PubMed  Google Scholar 

  49. Gorinstein S, Caspi A, Libman I et al (2006) Red grapefruit positively influences serum triglyceride level in patients suffering from coronary atherosclerosis: studies in vitro and in humans. J Agric Food Chem 54(5):1887–1892. https://doi.org/10.1021/jf058171g

    Article  CAS  PubMed  Google Scholar 

  50. Kuntz S, Kunz C, Herrmann J et al (2014) Anthocyanins from fruit juices improve the antioxidant status of healthy young female volunteers without affecting anti-inflammatory parameters: results from the randomised, double-blind, placebo-controlled, cross-over ANTHONIA (ANTHOcyanins in Nutrition Investigation Alliance) study. Br J Nutr 112(6):925–936. https://doi.org/10.1017/S0007114514001482

    Article  CAS  PubMed  Google Scholar 

  51. Zern TL, Wood RJ, Greene C et al (2005) Grape polyphenols exert a cardioprotective effect in pre- and postmenopausal women by lowering plasma lipids and reducing oxidative stress. J Nutr 135(8):1911–1917

    Article  CAS  PubMed  Google Scholar 

  52. Castilla P, Davalos A, Teruel JL et al (2008) Comparative effects of dietary supplementation with red grape juice and vitamin E on production of superoxide by circulating neutrophil NADPH oxidase in hemodialysis patients. Am J Clin Nutr 87(4):1053–1061

    Article  CAS  PubMed  Google Scholar 

  53. Constans J, Bennetau-Pelissero C, Martin JF et al (2015) Marked antioxidant effect of orange juice intake and its phytomicronutrients in a preliminary randomized cross-over trial on mild hypercholesterolemic men. Clin Nutr 34(6):1093–1100. https://doi.org/10.1016/j.clnu.2014.12.016

    Article  CAS  PubMed  Google Scholar 

  54. Freitas Lima LC, Braga VD, do Socorro de França Silva M (2015) Adipokines, diabetes and atherosclerosis: an inflammatory association. Front Physiol 6(51):304. https://doi.org/10.3389/fphys.2015.00304

    Article  PubMed  PubMed Central  Google Scholar 

  55. Leyva-López N, Gutierrez-Grijalva E, Ambriz-Perez D et al. (2016) Flavonoids as cytokine modulators: a possible therapy for inflammation-related diseases. IJMS 17(6): E921. https://doi.org/10.3390/ijms17060921

    Article  CAS  PubMed  Google Scholar 

  56. Pisonero-Vaquero S, Gonzalez-Gallego J, Sanchez-Campos S et al (2015) Flavonoids and related compounds in non-alcoholic fatty liver disease therapy. Curr Med Chem 22(25):2991–3012

    Article  CAS  PubMed  Google Scholar 

  57. van de Wier B, Koek GH, Bast A et al (2017) The potential of flavonoids in the treatment of non-alcoholic fatty liver disease. Crit Rev Food Sci Nutr 57(4):834–855. https://doi.org/10.1080/10408398.2014.952399

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The DONALD Study is supported by the Ministry of Innovation, Science, Research and Technology of the State of North Rhine-Westphalia, Germany. This analysis used data which were obtained within projects funded by the German Federal Ministry of Food, Agriculture and Consumer Protection through the Federal Office for Agriculture and Food (2810HS035), and the World Cancer Research Fund Netherlands (WCRF NL, 2013/975 and 2010/248). With respect to the co-authorships of C.H. and M.R. the following applies: The German Diabetes Center is funded by the German Federal Ministry of Health and the Ministry of Innovation, Science, Research and Technology of the State North Rhine-Westphalia. Their participation in this project was supported in part by a grant from the German Federal Ministry of Education and Research to the German Center for Diabetes Research (DZD e.V.).The authors thank the staff of the DONALD study for the data collection and editing as well as the laboratory measurement of urine samples. Also, they thank the staff of the laboratories of the German Diabetes Center, Düsseldorf, and the Laboratory for Translational Hormone Analytics in Pediatric Endocrinology and Diabetology, Giessen, for the conduct of blood analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anette E. Buyken.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The DONALD Study was approved by the Ethics Committee of the University of Bonn, Germany.

Informed consent

All assessments in the DONALD Study were performed with parental written informed consent.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 196 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penczynski, K.J., Herder, C., Krupp, D. et al. Flavonoid intake from fruit and vegetables during adolescence is prospectively associated with a favourable risk factor profile for type 2 diabetes in early adulthood. Eur J Nutr 58, 1159–1172 (2019). https://doi.org/10.1007/s00394-018-1631-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-018-1631-3

Keywords

Navigation