Skip to main content
Log in

High-fat diet inhibits PGC-1α suppressive effect on NFκB signaling in hepatocytes

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) regulates the expression of genes implicated in fatty acid oxidation and oxidative phosphorylation. Its role in liver steatosis is well established, since mice with liver-specific deletion of PGC-1α exhibit lipid accumulation and high-fat diet reduces hepatic PGC-1α expression in mice. In this study, we investigated the role of PGC-1α in the inflammatory changes observed in steatohepatitis induced by high-fat diet.

Methods

C57black/6 mice were fed a high-fat diet containing 30% fat for 10 weeks. After euthanasia, liver morphology was examined by HE staining and inflammation was determined by IL-6, TNF-α, and IL-1β quantification. Liver gene expression of PGC-1 isoforms was evaluated by real-time PCR and p65 NFκB nuclear translocation by Western blotting. HepG2 cells were treated with linoleic acid overload for 72 h to create an in vitro model of steatohepatitis. RNA interference (RNAi) was used to evaluate the involvement of PGC-1α on inflammatory mediators’ production by hepatocytes.

Results

The high-fat diet led to a state of nonalcoholic steatohepatitis, associated with increased deposits of intra-abdominal fat, hyperglycemia and hyperlipidemia. Mice liver also exhibited increased proinflammatory cytokines’ levels, decreased PGC-1α expression, and marked increase in p65 NFκB nuclear translocation. Linoleic acid treated cells also presented increased expression of proinflammatory cytokines and decreased PGC-1α expression. The knockdown of PGC-1α content caused an increase in IL-6 expression and release via enhanced IκBα phosphorylation and subsequent increase of p65 NFκB nuclear translocation.

Conclusion

High-fat diet induces liver inflammation by inhibiting PGC-1α expression and its suppressive effect in NFκB pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Marchesini G, Bugianesi E, Forlani G, Cerrelli F, Lenzi M, Manini R, Natale S, Vanni E, Villanova N, Melchionda N, Rizzetto M (2003) Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 37:917–923

    Article  PubMed  Google Scholar 

  2. Willebrords J, Pereira IV, Maes M, Crespo Yanguas S, Colle I, Van Den Bossche B, Da Silva TC, de Oliveira CP, Andraus W, Alves VA, Cogliati B, Vinken M (2015) Strategies, models and biomarkers in experimental non-alcoholic fatty liver disease research. Prog Lipid Res 59:106–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC- 1 family of transcription coactivators. Cell Metab 1:361–370

    Article  CAS  PubMed  Google Scholar 

  4. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839

    Article  CAS  PubMed  Google Scholar 

  5. Holloszy JO (2008) Regulation by exercise of skeletal muscle content of mitochondria and GLUT4. J Physiol Pharmacol 7:5–18

    Google Scholar 

  6. Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M (2001) CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413:179–183

    Article  CAS  PubMed  Google Scholar 

  7. Rhee J, Inoue Y, Yoon JC, Puigserver P, Fan M, Gonzalez FJ, Spiegelman BM (2003) Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proc Natl Acad Sci USA 100:4012–4017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DK, Newgard CB, Spiegelman BM (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413:131–138

    Article  CAS  PubMed  Google Scholar 

  9. Croce MA, Eagon JC, LaRiviere LL, Korenblat KM, Klein S, Finck BN (2007) Hepatic lipin 1beta expression is diminished in insulin-resistant obese subjects and is reactivated by markedweight loss. Diabetes 56:2395–2399

    Article  CAS  PubMed  Google Scholar 

  10. Aharoni-Simon M, Hann-Obercyger M, Pen S, Madar Z, Tirosh O (2011) Fatty liver is associated with impaired activity of PPARγ-coactivator 1α (PGC1α) and mitochondrial biogenesis in mice. Lab Invest 91:1018–1028

    Article  CAS  PubMed  Google Scholar 

  11. Layne MJ, Rector RS, Borengasser SJ, Naples SP, Uptergrove GM, Ibdah JA, Booth FW (1985) Thyfault JP (2009) Cessation of daily wheel running differentially alters fat oxidation capacity in liver, muscle, and adipose tissue. J Appl Physiol 106:161–168

    Google Scholar 

  12. Morris EM, Meers GM, Booth FW, Fritsche KL, Hardin CD, Thyfault JP, Ibdah JA (2012) PGC-1α overexpression results in increased hepatic fatty acid oxidation with reduced triacylglycerol accumulation and secretion. Am J Physiol Gastrointest Liver Physiol 303:979–992

    Article  CAS  Google Scholar 

  13. Nijland PG, Witte ME, van het Hof B, van der Pol S, Bauer J, Lassmann H, van der Valk P, de Vries HE, van Horssen J (2014) Astroglial PGC-1alpha increases mitochondrial antioxidant capacity and suppresses inflammation: implications for multiple sclerosis. Acta Neuropathol Commun 2:170

    Article  PubMed  PubMed Central  Google Scholar 

  14. Handschin C, Chin S, Li P, Liu F, Maratos-Flier E, Lebrasseur NK, Yan Z, Spiegelman BM (2007) Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J Biol Chem 282:30014–30021

    Article  CAS  PubMed  Google Scholar 

  15. Handschin C, Choi CS, Chin S, Kim S, Kawamori D, Kurpad AJ, Neubauer N, Hu J, Mootha VK, Kim YB, Kulkarni RN, Shulman GI, Spiegelman BM (2007) Abnormal glucose homeostasis in skeletal muscle-specific PGC-1alpha knockout mice reveals skeletal muscle-pancreatic beta cell crosstalk. J Clin Invest 117:3463–3474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Llimona F, de Lima TM, Moretti AI, Theobaldo M, Jukemura J, Velasco IT, Machado MC, Souza HP (2014) PGC-1α expression is increased in leukocytes in experimental acute pancreatitis. Inflammation 37:1231–1239

    CAS  PubMed  Google Scholar 

  17. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS, Unalp-Arida A, Yeh M, McCullough AJ, Sanyal AJ (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–1321

    Article  PubMed  Google Scholar 

  18. Schwartz DM, Wolins NE (2007) A simple and rapid method to assay triacylglycerol in cells and tissues. J Lipid Res 48(11):2514–2520

    Article  CAS  PubMed  Google Scholar 

  19. Matoušková P, Bártíková H, Boušová I, Hanušová V, Szotáková B, Skálová L (2014) Reference genes for real-time PCR quantification of messenger RNAs and microRNAs in mouse model of obesity. PLoS One 9(1):e86033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  21. Fortes MA, Marzuca-Nassr GN, Vitzel KF, da Justa Pinheiro CH, Newsholme P, Curi R (2016) Housekeeping proteins: How useful are they in skeletal muscle diabetes studies and muscle hypertrophy models? Anal Biochem 504:38–40

    Article  CAS  PubMed  Google Scholar 

  22. Santos CF, Carneiro RE, Mendonca LS, Aguila MB, Mandarim-de-Lacerda CA (2009) Pan-PPAR agonist beneficial effects in overweight mice fed a high-fat high-sucrose diet. Nutrition 25:818–827

    Article  CAS  Google Scholar 

  23. Marra F, Gastaldelli A, Svegliati Baroni G, Tell G, Tiribelli C (2008) Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends Mol Med 14:72–81

    Article  CAS  PubMed  Google Scholar 

  24. Oliveira LS, Santos DA, Barbosa-da-Silva S, Mandarim-de-Lacerda CA, Aguila MB (2014) The inflammatory profile and liver damage of a sucrose-rich diet in mice. J Nutr Biochem 25:193–200

    Article  CAS  PubMed  Google Scholar 

  25. Kuate D, Kengne AP, Biapa CP, Azantsa BG, Abdul Manan Bin Wan Muda W (2015) Tetrapleura tetraptera spice attenuates high-carboydrate, high-fat diet-induced obese and type 2 diabetic rats with metabolic syndrome features. Lipids Health Dis 14:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ding L, Liu JL, Hassan W, Wang LL, Yan FR, Shang J (2014) Lipid modulatory activities of Cichorium glandulosum Boiss et Huet are mediated by multiple components within hepatocytes. Sci Rep 4:4715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dixon LJ, Flask CA, Papouchado BG, Feldstein AE, Nagy LE (2013) Caspase-1 as a central regulator of high fat diet-induced non-alcoholic steatohepatitis. PLoS One 8:e56100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van der Heijden RA, Sheedfar F, Morrison MC, Hommelberg PP, Kor D, Kloosterhuis NJ, Gruben N, Youssef SA, de Bruin A, Hofker MH, Kleemann R, Koonen DP, Heeringa P (2015) High-fat diet induced obesity primes inflammation in adipose tissue prior to liver in C57BL/6j mice. Aging 7:256–268

    Article  PubMed  PubMed Central  Google Scholar 

  29. Petta S, Muratore C, Craxì A (2009) Non-alcoholic fatty liver disease pathogenesis: the present and the future. Dig Liver Dis 41:615–625

    Article  CAS  PubMed  Google Scholar 

  30. Eisele PS, Salatino S, Sobek J, Hottiger MO, Handschin C (2013) The peroxisome proliferator-activated receptor γ coactivator 1α/β (PGC-1) coactivators repress the transcriptional activity of NF-κB in skeletal muscle cells. J Biol Chem 288:2246–2260

    Article  CAS  PubMed  Google Scholar 

  31. Ghosh S, May MJ, Kopp EB (1998) NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16:225–260

    Article  CAS  PubMed  Google Scholar 

  32. Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18:621–663

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Design and conduct of the study: WAB, TAS, TML, HPS. Data collection and analysis: WAB, VJV, ICJ, RCP, SKA, DFB. Data interpretation: WAB, TAS, TML, HPS. Manuscript writing: WAB, TAS, TML, HPS.

Corresponding author

Correspondence to Thais Martins de Lima.

Ethics declarations

Funding

This work was supported by grants from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2012/07957-6).

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the author(s).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barroso, W.A., Victorino, V.J., Jeremias, I.C. et al. High-fat diet inhibits PGC-1α suppressive effect on NFκB signaling in hepatocytes. Eur J Nutr 57, 1891–1900 (2018). https://doi.org/10.1007/s00394-017-1472-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-017-1472-5

Keywords

Navigation