Skip to main content
Log in

Donkey milk consumption exerts anti-inflammatory properties by normalizing antimicrobial peptides levels in Paneth’s cells in a model of ileitis in mice

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

In this study, we showed the beneficial effects of donkey milk (DM) on inflammatory damages, endogenous antimicrobial peptides levels and fecal microbiota profile in a mice model of Crohn’s disease. Nowadays, new strategies of microbiome manipulations are on the light involving specific diets to induce and/or to maintain clinical remission. Interest of DM is explained by its high levels of antimicrobial peptides which confer it anti-inflammatory properties.

Methods

C57BL/6 mice were orally administered with or without indomethacin for 5 days and co-treated with vehicle, DM or heated DM during 7 days. Intestinal length and macroscopic damage scores (MDSs) were determined; ileal samples were taken off for microscopic damage (MD), lysozyme immunostaining and mRNA α-defensin assessments. Ileal luminal content and fecal pellets were collected for lysozyme enzymatic activity and lipocalin-2 (LCN-2) evaluations. Fecal microbiota profiles were compared using a real-time quantitative PCR-based analysis.

Results

Administration of indomethacin caused an ileitis in mice characterized by (1) a decrease in body weight and intestinal length, (2) a significant increase in MDS, MD and LCN-2, (3) a reduction in both α-defensin mRNA expression and lysozyme levels in Paneth’s cells reflected by a decrease in lysozyme activity in feces, and (4) a global change in relative abundance of targeted microbial communities. DM treatment significantly reduced almost of all these ileitis damages, whereas heated DM has no impact on ileitis.

Conclusions

DM consumption exerts anti-inflammatory properties in mice by restoring the endogenous levels of antimicrobial peptides which contribute in turn to reduce microbiota imbalance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CD:

Crohn’s disease

DAPI:

4’6-diamidino-2-phenylindole

DM:

Donkey milk

GULDA:

GUt low-density array

IBD:

Inflammatory bowel disease

MD:

Microscopic damage

MDS:

Macroscopic damage scores

NSAIDs:

Non-steroidal anti-inflammatory drugs

PBS:

Phosphate-buffered saline

PCA:

Principal component analysis

References

  1. Radford-Smith G, Pandeya N (2006) Associations between NOD2/CARD15 genotype and phenotype in Crohn’s disease-Are we there yet? World J Gastroenterol 12:7097

    Article  Google Scholar 

  2. Lichtenstein GR, Hanauer SB, Sandborn WJ, Practice Parameters Committee of American College of Gastroenterology (2009) Management of Crohn’s disease in adults. Am J Gastroenterol 104(465–483):484. doi:10.1038/ajg.2008.168

    Google Scholar 

  3. Sartor RB (2011) Efficacy of probiotics for the management of inflammatory bowel disease. Gastroenterol Hepatol 7:606

    Google Scholar 

  4. Korzenik JR (2007) Is Crohn’s disease due to defective immunity? Gut 56:2–5. doi:10.1136/gut.2006.095588

    Article  CAS  Google Scholar 

  5. Kamada N, Seo S-U, Chen GY, Núñez G (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13:321–335. doi:10.1038/nri3430

    Article  CAS  Google Scholar 

  6. Schaubeck M, Clavel T, Calasan J et al (2015) Dysbiotic gut microbiota causes transmissible Crohn’s disease-like ileitis independent of failure in antimicrobial defence. Gut. doi:10.1136/gutjnl-2015-309333

    Google Scholar 

  7. Hold GL (2014) Role of the gut microbiota in inflammatory bowel disease pathogenesis: what have we learnt in the past 10 years? World J Gastroenterol 20:1192. doi:10.3748/wjg.v20.i5.1192

    Article  Google Scholar 

  8. Kleessen B, Kroesen AJ, Buhr HJ, Blaut M (2002) Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scand J Gastroenterol 37:1034–1041

    Article  CAS  Google Scholar 

  9. Scanlan PD, Shanahan F, O’Mahony C, Marchesi JR (2006) Culture-independent analyses of temporal variation of the dominant fecal microbiota and targeted bacterial subgroups in Crohn’s disease. J Clin Microbiol 44:3980–3988. doi:10.1128/JCM.00312-06

    Article  CAS  Google Scholar 

  10. Manichanh C, Rigottier-Gois L, Bonnaud E et al (2006) Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55:205–211. doi:10.1136/gut.2005.073817

    Article  CAS  Google Scholar 

  11. Sokol H, Seksik P, Furet JP et al (2009) Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis 15:1183–1189. doi:10.1002/ibd.20903

    Article  CAS  Google Scholar 

  12. Swidsinski A, Loening-Baucke V, Vaneechoutte M, Doerffel Y (2008) Active Crohn’s disease and ulcerative colitis can be specifically diagnosed and monitored based on the biostructure of the fecal flora. Inflamm Bowel Dis 14:147–161. doi:10.1002/ibd.20330

    Article  Google Scholar 

  13. Sokol H, Pigneur B, Watterlot L et al (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 105:16731–16736. doi:10.1073/pnas.0804812105

    Article  CAS  Google Scholar 

  14. Salzman NH, Bevins CL (2013) Dysbiosis–a consequence of Paneth cell dysfunction. Semin Immunol 25:334–341. doi:10.1016/j.smim.2013.09.006

    Article  CAS  Google Scholar 

  15. Menendez A, Willing BP, Montero M et al (2013) Bacterial stimulation of the TLR-MyD88 pathway modulates the homeostatic expression of ileal Paneth cell a-defensins. J Innate Immun 5:39–49. doi:10.1159/000341630

    Article  CAS  Google Scholar 

  16. Salzman NH (2010) Paneth cell defensins and the regulation of the microbiome: détente at mucosal surfaces. Gut Microbes 1:401–406. doi:10.4161/gmic.1.6.14076

    Article  Google Scholar 

  17. Guaní-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, Terán LM (2010) Antimicrobial peptides: general overview and clinical implications in human health and disease. Clin Immunol 135:1–11. doi:10.1016/j.clim.2009.12.004

    Article  Google Scholar 

  18. Jäger S, Stange EF, Wehkamp J (2010) Antimicrobial peptides in gastrointestinal inflammation. Int J Inflamm 2010:1–11. doi:10.4061/2010/910283

    Article  Google Scholar 

  19. Wehkamp J, Salzman NH, Porter E et al (2005) Reduced Paneth cell α-defensins in ileal Crohn’s disease. Proc Natl Acad Sci USA 102:18129–18134

    Article  CAS  Google Scholar 

  20. Wehkamp J, Wang G, Kübler I et al (2007) The Paneth cell α-defensin deficiency of ileal Crohn’s disease is linked to Wnt/Tcf-4. J Immunol 179:3109–3118

    Article  CAS  Google Scholar 

  21. Cadwell K, Patel KK, Komatsu M et al (2009) A common role for Atg16L1, Atg5, and Atg7 in small intestinal Paneth cells and Crohn disease. Autophagy 5:250–252. doi:10.4161/auto.5.2.7560

    Article  CAS  Google Scholar 

  22. D’Haens GR, Sartor RB, Silverberg MS et al (2014) Future directions in inflammatory bowel disease management. J Crohns Colitis 8:726–734. doi:10.1016/j.crohns.2014.02.025

    Article  Google Scholar 

  23. Ren W-K, Yin J, Zhu X-P et al (2013) Glutamine on intestinal inflammation: a mechanistic perspective. Eur J Inflamm 11:315–326. doi:10.1177/1721727X1301100201

    Article  CAS  Google Scholar 

  24. Frøslie KF, Jahnsen J, Moum BA, Vatn MH (2007) Mucosal healing in inflammatory bowel disease: results from a Norwegian population-based cohort. Gastroenterology 133:412–422. doi:10.1053/j.gastro.2007.05.051

    Article  Google Scholar 

  25. Ren W, Chen S, Yin J et al (2014) Dietary arginine supplementation of mice alters the microbial population and activates intestinal innate immunity. J Nutr 144:988–995. doi:10.3945/jn.114.192120

    Article  CAS  Google Scholar 

  26. Guo HY, Pang K, Zhang XY et al (2007) Composition, physiochemical properties, nitrogen fraction distribution, and amino acid profile of donkey milk. J Dairy Sci 90:1635–1643. doi:10.3168/jds.2006-600

    Article  CAS  Google Scholar 

  27. Uniacke-Lowe T, Huppertz T, Fox PF (2010) Equine milk proteins: chemistry, structure and nutritional significance. Int Dairy J 20:609–629. doi:10.1016/j.idairyj.2010.02.007

    Article  CAS  Google Scholar 

  28. Muraro MA, Giampietro PG, Galli E (2002) Soy formulas and nonbovine milk. Ann Allergy Asthma Immunol 89:97–101

    Article  CAS  Google Scholar 

  29. Carroccio A, Cavataio F, Montalto G et al (2000) Intolerance to hydrolysed cow’s milk proteins in infants: clinical characteristics and dietary treatment. Clin Exp Allergy 30:1597–1603

    Article  CAS  Google Scholar 

  30. Tidona F, Sekse C, Criscione A et al (2011) Antimicrobial effect of donkeys’ milk digested in vitro with human gastrointestinal enzymes. Int Dairy J 21:158–165. doi:10.1016/j.idairyj.2010.10.008

    Article  CAS  Google Scholar 

  31. Zhang X-Y, Zhao L, Jiang L et al (2008) The antimicrobial activity of donkey milk and its microflora changes during storage. Food Control 19:1191–1195. doi:10.1016/j.foodcont.2008.01.005

    Article  CAS  Google Scholar 

  32. Mao X, Gu J, Sun Y et al (2009) Anti-proliferative and anti-tumour effect of active components in donkey milk on A549 human lung cancer cells. Int Dairy J 19:703–708. doi:10.1016/j.idairyj.2009.05.007

    Article  CAS  Google Scholar 

  33. Craven M, Egan CE, Dowd SE et al (2012) Inflammation drives dysbiosis and bacterial invasion in murine models of ileal Crohn’s Disease. PLoS One 7:e41594. doi:10.1371/journal.pone.0041594

    Article  CAS  Google Scholar 

  34. Wallace JL, MacNaughton WK, Morris GP, Beck PL (1989) Inhibition of leukotriene synthesis markedly accelerates healing in a rat model of inflammatory bowel disease. Gastroenterology 96:29–36

    Article  CAS  Google Scholar 

  35. Fabia R, Ar’Rajab A, Johansson ML et al (1993) The effect of exogenous administration of Lactobacillus reuteri R2LC and oat fiber on acetic acid-induced colitis in the rat. Scand J Gastroenterol 28:155–162

    Article  CAS  Google Scholar 

  36. Chassaing B, Srinivasan G, Delgado MA et al (2012) Fecal lipocalin 2, a sensitive and broadly dynamic non-invasive biomarker for intestinal inflammation. PLoS One 7:e44328. doi:10.1371/journal.pone.0044328

    Article  CAS  Google Scholar 

  37. Bergström A, Licht TR, Wilcks A et al (2012) Introducing GUt low-density array (GULDA)—a validated approach for qPCR-based intestinal microbial community analysis. FEMS Microbiol Lett 337:38–47. doi:10.1111/1574-6968.12004

    Article  Google Scholar 

  38. Bergstrom A, Skov TH, Bahl MI et al (2014) Establishment of intestinal microbiota during early life: a longitudinal, explorative study of a large cohort of danish infants. Appl Environ Microbiol 80:2889–2900. doi:10.1128/AEM.00342-14

    Article  CAS  Google Scholar 

  39. Hendrickson BA, Gokhale R, Cho JH (2002) Clinical aspects and pathophysiology of inflammatory bowel disease. Clin Microbiol Rev 15:79–94

    Article  Google Scholar 

  40. Danese S, Fiocchi C (2006) Etiopathogenesis of inflammatory bowel diseases. World J Gastroenterol 12:4807–4812

    Article  CAS  Google Scholar 

  41. Hotamisligil GS, Erbay E (2008) Nutrient sensing and inflammation in metabolic diseases. Nat Rev Immunol 8:923–934. doi:10.1038/nri2449

    Article  CAS  Google Scholar 

  42. Trinchese G, Cavaliere G, Canani RB et al (2015) Human, donkey and cow milk differently affects energy efficiency and inflammatory state by modulating mitochondrial function and gut microbiota. J Nutr Biochem. doi:10.1016/j.jnutbio.2015.05.003

    Google Scholar 

  43. Tafaro A, Magrone T, Jirillo F et al (2007) Immunological properties of donkey’s milk: its potential use in the prevention of atherosclerosis. Curr Pharm Des 13:3711–3717

    Article  CAS  Google Scholar 

  44. Jirillo F, Jirillo E, Magrone T (2010) Donkey’s and goat’s milk consumption and benefits to human health with special reference to the inflammatory status. Curr Pharm Des 16:859–863

    Article  CAS  Google Scholar 

  45. Salimei E, Fantuz F (2012) Equid milk for human consumption. Int Dairy J 24:130–142. doi:10.1016/j.idairyj.2011.11.008

    Article  CAS  Google Scholar 

  46. Gastaldi D, Bertino E, Monti G et al (2010) Donkey’s milk detailed lipid composition. Front Biosci E 2:537–546

    Google Scholar 

  47. Brumini D, Criscione A, Bordonaro S et al (2015) Whey proteins and their antimicrobial properties in donkey milk: a brief review. Dairy Sci Technol. doi:10.1007/s13594-015-0246-1

    Google Scholar 

  48. Murua A, Todorov SD, Vieira ADS et al (2013) Isolation and identification of bacteriocinogenic strain of Lactobacillus plantarum with potential beneficial properties from donkey milk. J Appl Microbiol 114:1793–1809. doi:10.1111/jam.12190

    Article  CAS  Google Scholar 

  49. Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661. doi:10.1096/fj.07-9574LSF

    Article  CAS  Google Scholar 

  50. Morris AJ, Madhok R, Sturrock RD et al (1991) Enteroscopic diagnosis of small bowel ulceration in patients receiving non-steroidal anti-inflammatory drugs. Lancet Lond Engl 337:520

    Article  CAS  Google Scholar 

  51. Fujimori S, Seo T, Gudis K et al (2007) Diagnosis and treatment of obscure gastrointestinal bleeding using combined capsule endoscopy and double balloon endoscopy: 1-year follow-up study. Endoscopy 39:1053–1058. doi:10.1055/s-2007-967014

    Article  CAS  Google Scholar 

  52. Robert A, Asano T (1977) Resistance of germfree rats to indomethacin-induced intestinal lesions. Prostaglandins 14:333–341

    Article  CAS  Google Scholar 

  53. Konaka A, Kato S, Tanaka A et al (1999) Roles of enterobacteria, nitric oxide and neutrophil in pathogenesis of indomethacin-induced small intestinal lesions in rats. Pharmacol Res 40:517–524. doi:10.1006/phrs.1999.0550

    Article  CAS  Google Scholar 

  54. Bjarnason I, Williams P, So A et al (1984) Intestinal permeability and inflammation in rheumatoid arthritis: effects of non-steroidal anti-inflammatory drugs. Lancet Lond Engl 2:1171–1174

    Article  CAS  Google Scholar 

  55. Fujimori S, Gudis K, Takahashi Y et al (2010) Distribution of small intestinal mucosal injuries as a result of NSAID administration. Eur J Clin Invest 40:504–510. doi:10.1111/j.1365-2362.2010.02290.x

    Article  CAS  Google Scholar 

  56. Takeuchi K, Smale S, Premchand P et al (2006) Prevalence and mechanism of nonsteroidal anti-inflammatory drug-induced clinical relapse in patients with inflammatory bowel disease. Clin Gastroenterol Hepatol 4:196–202

    Article  CAS  Google Scholar 

  57. Schroder K, Hertzog PJ, Ravasi T, Hume DA (2004) Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75:163–189. doi:10.1189/jlb.0603252

    Article  CAS  Google Scholar 

  58. Lamine F, Fioramonti J, Bueno L et al (2004) Nitric oxide released by Lactobacillus farciminis improves TNBS-induced colitis in rats. Scand J Gastroenterol 39:37–45

    Article  CAS  Google Scholar 

  59. Derde M, Nau F, Lechevalier V et al (2015) Native lysozyme and dry-heated lysozyme interactions with membrane lipid monolayers: lateral reorganization of LPS monolayer, model of the Escherichia coli outer membrane. Biochim Biophys Acta 1848:174–183. doi:10.1016/j.bbamem.2014.10.026

    Article  CAS  Google Scholar 

  60. Ellison RT, Giehl TJ (1991) Killing of gram-negative bacteria by lactoferrin and lysozyme. J Clin Invest 88:1080–1091

    Article  CAS  Google Scholar 

  61. Ibrahim HR, Kato A, Kobayashi K (1991) Antimicrobial effects of lysozyme against gram-negative bacteria due to covalent binding of palmitic acid. J Agric Food Chem 39:2077–2082. doi:10.1021/jf00011a039

    Article  CAS  Google Scholar 

  62. Sokol H, Seksik P, Rigottier-Gois L et al (2006) Specificities of the fecal microbiota in inflammatory bowel disease. Inflamm Bowel Dis 12:106–111. doi:10.1097/01.MIB.0000200323.38139.c6

    Article  Google Scholar 

  63. Willing BP, Dicksved J, Halfvarson J et al (2010) A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 139(1844–1854):e1. doi:10.1053/j.gastro.2010.08.049

    Google Scholar 

  64. Rajca S, Grondin V, Louis E et al (2014) Alterations in the intestinal microbiome (dysbiosis) as a predictor of relapse after infliximab withdrawal in Crohn’s disease. Inflamm Bowel Dis 20:978–986. doi:10.1097/MIB.0000000000000036

    Google Scholar 

  65. Ganesh BP, Klopfleisch R, Loh G, Blaut M (2013) Commensal Akkermansia muciniphila exacerbates gut inflammation in salmonella typhimurium-infected gnotobiotic mice. PLoS One 8:e74963. doi:10.1371/journal.pone.0074963

    Article  CAS  Google Scholar 

  66. Derrien M, Van Baarlen P, Hooiveld G et al (2011) Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader akkermansia muciniphila. Front Microbiol 2:166. doi:10.3389/fmicb.2011.00166

    Article  Google Scholar 

  67. Belzer C, de Vos WM (2012) Microbes inside–from diversity to function: the case of Akkermansia. ISME J 6:1449–1458. doi:10.1038/ismej.2012.6

    Article  CAS  Google Scholar 

  68. Klein A, Roussel P (1998) O-acetylation of sialic acids. Biochimie 80:49–57

    Article  CAS  Google Scholar 

  69. Larsson JMH, Karlsson H, Crespo JG et al (2011) Altered O-glycosylation profile of MUC2 mucin occurs in active ulcerative colitis and is associated with increased inflammation. Inflamm Bowel Dis 17:2299–2307. doi:10.1002/ibd.21625

    Article  Google Scholar 

  70. Earley H, Lennon G, Balfe A et al (2015) A preliminary study examining the binding capacity of akkermansia muciniphila and desulfovibrio spp., to Colonic mucin in health and ulcerative colitis. PLoS One 10:e0135280. doi:10.1371/journal.pone.0135280

    Article  Google Scholar 

  71. Wehkamp J, Koslowski M, Wang G, Stange EF (2008) Barrier dysfunction due to distinct defensin deficiencies in small intestinal and colonic Crohn’s disease. Mucosal Immunol 1(Suppl 1):S67–S74. doi:10.1038/mi.2008.48

    Article  CAS  Google Scholar 

  72. Simms LA, Doecke JD, Walsh MD et al (2008) Reduced -defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn’s disease. Gut 57:903–910. doi:10.1136/gut.2007.142588

    Article  CAS  Google Scholar 

  73. Muniz LR, Knosp C, Yeretssian G (2012) Intestinal antimicrobial peptides during homeostasis, infection, and disease. Front Immunol. doi:10.3389/fimmu.2012.00310

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge “Les Ânes d’Autan” and “La ferme du Hitton” for providing donkey milk. This work was supported by Ecole d’Ingénieurs de PURPAN (Toulouse, France) and Institut National Ânes et Mulets (Paris, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Eutamène.

Ethics declarations

Conflict of interest

Sophie Yvon, Maïwenn Olier, Mathilde Leveque, Gwenaëlle Jard, Helene Tormo, Djamila Ali Haimoud-Lekhal, Magali Peter, Hélène Eutamène have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yvon, S., Olier, M., Leveque, M. et al. Donkey milk consumption exerts anti-inflammatory properties by normalizing antimicrobial peptides levels in Paneth’s cells in a model of ileitis in mice. Eur J Nutr 57, 155–166 (2018). https://doi.org/10.1007/s00394-016-1304-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-016-1304-z

Keywords

Navigation