Skip to main content
Log in

Relationship between soluble receptor for advanced glycation end products (sRAGE), body composition and fat distribution in healthy women

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Soluble receptor for advanced glycation end products (sRAGE) is a decoy receptor which sequesters RAGE ligands and acts as a cytoprotective agent. To date, it is unclear whether the lower sRAGE levels observed in obesity are a marker of increased overall adiposity or reflect increases in particular fat depots. Therefore, we evaluated in healthy women the relationship among sRAGE and indicators of adiposity, including abdominal visceral (VAT) and epicardial visceral (EAT) adipose tissues, to explore the potential role of sRAGE as an earlier biomarker of cardiometabolic risk.

Methods

Plasma sRAGE levels were quantified by an enzyme-linked immunosorbent assay in 47 healthy women. Total fat mass (FM) and fat-free mass were estimated with bioimpedance analysis. Anthropometric measures and biochemical data were recorded. Subcutaneous adipose tissue, VAT and EAT volumes were measured by magnetic resonance imaging.

Results

Obese women had lower sRAGE levels compared to normal-weight women. sRAGE levels were also lower in women with a waist circumference (WC) larger than 80 cm. Correlation analyses indicated an inverse association of sRAGE with body mass index and FM. Concerning adipose tissue distribution, sRAGE inversely correlated with WC, EAT and VAT depots. In a multiple stepwise regression analysis, performed to emphasize the role of fat distribution, EAT volume was the only predictor of sRAGE.

Conclusions

Lower sRAGE levels reflect accumulation of visceral fat mainly at the epicardial level and are present in advance of metabolic complications in adult women. sRAGE quantification might be an early marker of cardiometabolic risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AGE:

Advanced glycation end products

BMI:

Body mass index

CAD:

Coronary artery disease

EAT:

Epicardial adipose tissue

HOMA-IR:

Homeostasis model assessment of insulin resistance

LAP:

Lipid accumulation product

RAGE:

Receptor for advanced glycation end products

sRAGE:

Soluble receptor for advanced glycation end products

SAT:

Subcutaneous adipose tissue

VAT:

Visceral adipose tissue

References

  1. Kislinger T, Fu C, Huber B, Qu W, Taguchi A, Du Yan S, Hofmann M, Yan SF, Pischetsrieder M, Stern D, Schmidt AM (1999) N(epsilon)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. J Biol Chem 274(44):31740–31749

    Article  CAS  Google Scholar 

  2. Malherbe P, Richards JG, Gaillard H, Thompson A, Diener C, Schuler A, Huber G (1999) cDNA cloning of a novel secreted isoform of the human receptor for advanced glycation end products and characterization of cells co-expressing cell-surface scavenger receptors and Swedish mutant amyloid precursor protein. Brain Res Mol Brain Res 71(2):159–170

    Article  CAS  Google Scholar 

  3. Hofmann MA, Drury S, Fu C, Qu W, Taguchi A, Lu Y, Avila C, Kambham N, Bierhaus A, Nawroth P, Neurath MF, Slattery T, Beach D, McClary J, Nagashima M, Morser J, Stern D, Schmidt AM (1999) RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97(7):889–901

    Article  CAS  Google Scholar 

  4. Chavakis T, Bierhaus A, Al-Fakhri N, Schneider D, Witte S, Linn T, Nagashima M, Morser J, Arnold B, Preissner KT, Nawroth PP (2003) The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment. J Exp Med 198(10):1507–1515

    Article  CAS  Google Scholar 

  5. Bierhaus A, Schiekofer S, Schwaninger M, Andrassy M, Humpert PM, Chen J, Hong M, Luther T, Henle T, Kloting I, Morcos M, Hofmann M, Tritschler H, Weigle B, Kasper M, Smith M, Perry G, Schmidt AM, Stern DM, Haring HU, Schleicher E, Nawroth PP (2001) Diabetes-associated sustained activation of the transcription factor nuclear factor-κB. Diabetes 50(12):2792–2808

    Article  CAS  Google Scholar 

  6. Kisugi R, Kouzuma T, Yamamoto T, Akizuki S, Miyamoto H, Someya Y, Yokoyama J, Abe I, Hirai N, Ohnishi A (2007) Structural and glycation site changes of albumin in diabetic patient with very high glycated albumin. Clin Chim Acta 382(1–2):59–64

    Article  CAS  Google Scholar 

  7. Unoki H, Bujo H, Yamagishi S, Takeuchi M, Imaizumi T, Saito Y (2007) Advanced glycation end products attenuate cellular insulin sensitivity by increasing the generation of intracellular reactive oxygen species in adipocytes. Diabetes Res Clin Pract 76(2):236–244

    Article  CAS  Google Scholar 

  8. Monden M, Koyama H, Otsuka Y, Morioka T, Mori K, Shoji T, Mima Y, Motoyama K, Fukumoto S, Shioi A, Emoto M, Yamamoto Y, Yamamoto H, Nishizawa Y, Kurajoh M, Yamamoto T, Inaba M (2013) Receptor for advanced glycation end products regulates adipocyte hypertrophy and insulin sensitivity in mice: involvement of Toll-like receptor 2. Diabetes 62(2):478–489

    Article  CAS  Google Scholar 

  9. Koyama H, Shoji T, Yokoyama H, Motoyama K, Mori K, Fukumoto S, Emoto M, Tamei H, Matsuki H, Sakurai S, Yamamoto Y, Yonekura H, Watanabe T, Yamamoto H, Nishizawa Y (2005) Plasma level of endogenous secretory RAGE is associated with components of the metabolic syndrome and atherosclerosis. Arterioscler Thromb Vasc Biol 25(12):2587–2593

    Article  CAS  Google Scholar 

  10. Basta G (2008) Receptor for advanced glycation endproducts and atherosclerosis: from basic mechanisms to clinical implications. Atherosclerosis 196(1):9–21

    Article  CAS  Google Scholar 

  11. Choi KM, Yoo HJ, Kim HY, Lee KW, Seo JA, Kim SG, Kim NH, Choi DS, Baik SH (2009) Association between endogenous secretory RAGE, inflammatory markers and arterial stiffness. Int J Cardiol 132(1):96–101

    Article  CAS  Google Scholar 

  12. Norata GD, Garlaschelli K, Grigore L, Tibolla G, Raselli S, Redaelli L, Buccianti G, Catapano AL (2009) Circulating soluble receptor for advanced glycation end products is inversely associated with body mass index and waist/hip ratio in the general population. Nutr Metab Cardiovasc Dis 19(2):129–134

    Article  CAS  Google Scholar 

  13. Vazzana N, Santilli F, Cuccurullo C, Davi G (2009) Soluble forms of RAGE in internal medicine. Intern Emerg Med 4(5):389–401

    Article  Google Scholar 

  14. ADA (2015) Standards of medical care in diabetes–2015: summary of revisions. Diabetes Care 38(Suppl):S4

    Google Scholar 

  15. An P, Miljkovic I, Thyagarajan B, Kraja AT, Daw EW, Pankow JS, Selvin E, Kao WH, Maruthur NM, Nalls MA, Liu Y, Harris TB, Lee JH, Borecki IB, Christensen K, Eckfeldt JH, Mayeux R, Perls TT, Newman AB, Province MA (2014) Genome-wide association study identifies common loci influencing circulating glycated hemoglobin (HbA1c) levels in non-diabetic subjects: the Long Life Family Study (LLFS). Metabolism 63(4):461–468

    Article  CAS  Google Scholar 

  16. Hudson BI, Dong C, Gardener H, Elkind MS, Wright CB, Goldberg R, Sacco RL, Rundek T (2014) Serum levels of soluble receptor for advanced glycation end-products and metabolic syndrome: the Northern Manhattan Study. Metabolism 63(9):1125–1130

    Article  CAS  Google Scholar 

  17. Uribarri J, Cai W, Woodward M, Tripp E, Goldberg L, Pyzik R, Yee K, Tansman L, Chen X, Mani V, Fayad ZA, Vlassara H (2015) Elevated serum advanced glycation endproducts in obese indicate risk for the metabolic syndrome: a link between healthy and unhealthy obesity? J Clin Endocrinol Metab 100(5):1957–1966

    Article  CAS  Google Scholar 

  18. Agarwal MM, Dhatt GS, Shah SM (2010) Gestational diabetes mellitus: simplifying the international association of diabetes and pregnancy diagnostic algorithm using fasting plasma glucose. Diabetes Care 33(9):2018–2020

    Article  Google Scholar 

  19. Colhoun HM, Betteridge DJ, Durrington P, Hitman G, Neil A, Livingstone S, Charlton-Menys V, Bao W, Demicco DA, Preston GM, Deshmukh H, Tan K, Fuller JH (2011) Total soluble and endogenous secretory receptor for advanced glycation end products as predictive biomarkers of coronary heart disease risk in patients with type 2 diabetes: an analysis from the CARDS trial. Diabetes 60(9):2379–2385

    Article  CAS  Google Scholar 

  20. Yamagishi S, Adachi H, Nakamura K, Matsui T, Jinnouchi Y, Takenaka K, Takeuchi M, Enomoto M, Furuki K, Hino A, Shigeto Y, Imaizumi T (2006) Positive association between serum levels of advanced glycation end products and the soluble form of receptor for advanced glycation end products in nondiabetic subjects. Metabolism 55(9):1227–1231

    Article  CAS  Google Scholar 

  21. de Giorgis T, D’Adamo E, Giannini C, Chiavaroli V, Scarinci A, Verrotti A, Chiarelli F, Mohn A (2012) Could receptors for advanced glycation end products be considered cardiovascular risk markers in obese children? Antioxid Redox Signal 17(2):187–191

    Article  Google Scholar 

  22. Selvin E, Halushka MK, Rawlings AM, Hoogeveen RC, Ballantyne CM, Coresh J, Astor BC (2013) sRAGE and risk of diabetes, cardiovascular disease, and death. Diabetes 62(6):2116–2121

    Article  CAS  Google Scholar 

  23. Malavazos AE, Corsi MM, Ermetici F, Coman C, Sardanelli F, Rossi A, Morricone L, Ambrosi B (2007) Proinflammatory cytokines and cardiac abnormalities in uncomplicated obesity: relationship with abdominal fat deposition. Nutr Metab Cardiovasc Dis 17(4):294–302

    Article  CAS  Google Scholar 

  24. Despres JP (2012) Body fat distribution and risk of cardiovascular disease: an update. Circulation 126(10):1301–1313

    Article  Google Scholar 

  25. Rosito GA, Massaro JM, Hoffmann U, Ruberg FL, Mahabadi AA, Vasan RS, O’Donnell CJ, Fox CS (2008) Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation 117(5):605–613

    Article  Google Scholar 

  26. Mahabadi AA, Reinsch N, Lehmann N, Altenbernd J, Kalsch H, Seibel RM, Erbel R, Mohlenkamp S (2010) Association of pericoronary fat volume with atherosclerotic plaque burden in the underlying coronary artery: a segment analysis. Atherosclerosis 211(1):195–199

    Article  CAS  Google Scholar 

  27. Iacobellis G, Lonn E, Lamy A, Singh N, Sharma AM (2011) Epicardial fat thickness and coronary artery disease correlate independently of obesity. Int J Cardiol 146(3):452–454

    Article  Google Scholar 

  28. Dozio E, Briganti S, Vianello E, Dogliotti G, Barassi A, Malavazos AE, Ermetici F, Morricone L, Sigruener A, Schmitz G, Corsi Romanelli MM (2015) Epicardial adipose tissue inflammation is related to vitamin D deficiency in patients affected by coronary artery disease. Nutr Metab Cardiovasc Dis 25(3):267–273

    Article  CAS  Google Scholar 

  29. Dozio E, Dogliotti G, Malavazos AE, Bandera F, Cassetti G, Vianello E, Zelaschi R, Barassi A, Pellissero G, Solimene U, Morricone L, Sigruener A, Tarabin V, Schmitz G, Menicanti L, Corsi Romanelli MM (2012) IL-18 level in patients undergoing coronary artery bypass grafting surgery or valve replacement: which link with epicardial fat depot? Int J Immunopathol Pharmacol 25(4):1011–1020

    Article  CAS  Google Scholar 

  30. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419

    Article  CAS  Google Scholar 

  31. Kahn HS (2005) The “lipid accumulation product” performs better than the body mass index for recognizing cardiovascular risk: a population-based comparison. BMC Cardiovasc Disord 5:26

    Article  Google Scholar 

  32. Ceriello A, Colagiuri S (2008) International Diabetes Federation guideline for management of postmeal glucose: a review of recommendations. Diabet Med 25(10):1151–1156

    Article  CAS  Google Scholar 

  33. Fluchter S, Haghi D, Dinter D, Heberlein W, Kuhl HP, Neff W, Sueselbeck T, Borggrefe M, Papavassiliu T (2007) Volumetric assessment of epicardial adipose tissue with cardiovascular magnetic resonance imaging. Obesity (Silver Spring) 15(4):870–878

    Article  Google Scholar 

  34. Malavazos AE, Di Leo G, Secchi F, Lupo EN, Dogliotti G, Coman C, Morricone L, Corsi MM, Sardanelli F, Iacobellis G (2010) Relation of echocardiographic epicardial fat thickness and myocardial fat. Am J Cardiol 105(12):1831–1835

    Article  Google Scholar 

  35. van der Kooy K, Seidell JC (1993) Techniques for the measurement of visceral fat: a practical guide. Int J Obes Relat Metab Disord 17(4):187–196

    Google Scholar 

  36. Gaens KH, Stehouwer CD, Schalkwijk CG (2013) Advanced glycation endproducts and its receptor for advanced glycation endproducts in obesity. Curr Opin Lipidol 24(1):4–11

    Article  CAS  Google Scholar 

  37. Gaens KH, Goossens GH, Niessen PM, van Greevenbroek MM, van der Kallen CJ, Niessen HW, Rensen SS, Buurman WA, Greve JW, Blaak EE, van Zandvoort MA, Bierhaus A, Stehouwer CD, Schalkwijk CG (2014) Nepsilon-(carboxymethyl)lysine-receptor for advanced glycation end product axis is a key modulator of obesity-induced dysregulation of adipokine expression and insulin resistance. Arterioscler Thromb Vasc Biol 34(6):1199–1208

    Article  CAS  Google Scholar 

  38. Ojima A, Matsui T, Nakamura N, Higashimoto Y, Ueda S, Fukami K, Okuda S, Yamagishi S (2015) DNA aptamer raised against advanced glycation end products (AGEs) improves glycemic control and decreases adipocyte size in fructose-fed rats by suppressing AGE-RAGE axis. Horm Metab Res 47(4):253–258

    CAS  Google Scholar 

  39. Dozio E, Vianello, E., Briganti, S., Lamont, J., Tacchini, L., Schmitz, G., Corsi Romanelli, M.M. (2016) Expression of the receptor for advanced glycation end products in epicardial fat: link with tissue thickness and local insulin resistance in coronary artery disease. J Diabetes Res (Article ID 2327341):1–8

  40. Sebekova K, Somoza V, Jarcuskova M, Heidland A, Podracka L (2009) Plasma advanced glycation end products are decreased in obese children compared with lean controls. Int J Pediatr Obes 4(2):112–118

    Article  Google Scholar 

  41. He CT, Lee CH, Hsieh CH, Hsiao FC, Kuo P, Chu NF, Hung YJ (2014) Soluble form of receptor for advanced glycation end products is associated with obesity and metabolic syndrome in adolescents. Int J Endocrinol 2014:657607

    Google Scholar 

  42. Momma H, Niu K, Kobayashi Y, Huang C, Chujo M, Otomo A, Tadaura H, Miyata T, Nagatomi R (2014) Higher serum soluble receptor for advanced glycation end product levels and lower prevalence of metabolic syndrome among Japanese adult men: a cross-sectional study. Diabetol Metab Syndr 6(1):33

    Article  Google Scholar 

  43. Davidovich D, Gastaldelli A, Sicari R (2013) Imaging cardiac fat. Eur Heart J Cardiovasc Imaging 14(7):625–630

    Article  Google Scholar 

  44. Talman AH, Psaltis PJ, Cameron JD, Meredith IT, Seneviratne SK, Wong DT (2014) Epicardial adipose tissue: far more than a fat depot. Cardiovasc Diagn Ther 4(6):416–429

    Google Scholar 

  45. Saremi F, Mekhail S, Sefidbakht S, Thonar B, Malik S, Sarlaty T (2011) Quantification of epicardial adipose tissue: correlation of surface area and volume measurements. Acad Radiol 18(8):977–983

    Article  Google Scholar 

  46. Bertaso AG, Bertol D, Duncan BB, Foppa M (2013) Epicardial fat: definition, measurements and systematic review of main outcomes. Arq Bras Cardiol 101(1):e18–e28

    Google Scholar 

  47. Maislin G, Ahmed MM, Gooneratne N, Thorne-Fitzgerald M, Kim C, Teff K, Arnardottir ES, Benediktsdottir B, Einarsdottir H, Juliusson S, Pack AI, Gislason T, Schwab RJ (2012) Single slice vs. volumetric MR assessment of visceral adipose tissue: reliability and validity among the overweight and obese. Obesity (Silver Spring) 20(10):2124–2132

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Elena Costa, I.R.C.C.S. Policlinico San Donato, Milan, Italy, for clinical chemistry data and Prof. Simona Villani, Unit of Biostatistics and Clinical Epidemiology, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy, for biostatistical support. The study was supported by funds from Italian Ministry for Health “Ricerca Corrente” IRCCS Policlinico San Donato.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Dozio.

Ethics declarations

Conflict of interest

All authors have read the journal’s policy on disclosure of potential conflicts of interest and have none to declare. All authors have read the journal’s authorship agreement, and the manuscript has been reviewed and approved by all named authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dozio, E., Briganti, S., Delnevo, A. et al. Relationship between soluble receptor for advanced glycation end products (sRAGE), body composition and fat distribution in healthy women. Eur J Nutr 56, 2557–2564 (2017). https://doi.org/10.1007/s00394-016-1291-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-016-1291-0

Keywords

Navigation