Skip to main content

Advertisement

Log in

Experimental colitis and malnutrition differentially affect the metabolism of glutathione and related sulfhydryl metabolites in different tissues

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Inflammatory bowel diseases (IBD) are characterized by severe inflammation within the gastrointestinal (GI) tract. This inflammation is known to drive the catabolism of protein in the affected tissue and modulate systemic protein metabolism. Yet despite the established increase in oxidative stress and changes in protein catabolism, little is known as to the effects of IBD on metabolism of glutathione (GSH) and related metabolites. The aim of this study was to conduct a comprehensive analysis of the response of GSH and related sulfhydryl metabolites to malnutrition and GI inflammation. We hypothesized that the inflammatory stress of colitis would decrease the concentration and the synthesis of GSH in various tissues of well-nourished piglets. Additionally, the superimposition of malnutrition on colitis would further decrease glutathione status.

Methods

Healthy, well-nourished piglets were compared to those receiving dextran sulphate sodium-induced, a macronutrient-restricted diet or both. The synthesis of GSH was determined by primed constant infusion of [15N,13C2]glycine and tandem mass spectrometry analysis. Additionally, the concentrations of GSH and related sulfhydryl metabolites were also determined by UHPLC–tandem mass spectrometry—a novel analytic technique.

Results

In healthy piglets, GSH synthesis was highest in the liver, along with the concentrations of both cysteine and γ-glutamylcysteine. Piglets with colitis had decreased synthesis of GSH and decreased concentrations of GSH, cysteine and γ-glutamylcysteine in the distal colon compared to healthy controls. Additionally, there was no change with superimposition of malnutrition on colitis in the distal colon.

Conclusion

Synthesis and metabolism of GSH are uniquely regulated in each tissue. Colitis, independent of nutrition, compromises GSH status and the concentration of cysteine in the distal colon of piglets with GI inflammation. The techniques developed in this study have translational applications and can be scaled for use in clinical investigation of GI inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Griffiths A, Nguyen P, Smith C, MacMillan J, Sherman P (1993) Growth and clinical course of children with Crohn’s disease. Gut 34:939–943

    Article  CAS  Google Scholar 

  2. Markowitz J, Daum F (1994) Growth impairment in pediatric inflammatory bowel disease. Am J Gastroenterol 89:319–326

    CAS  Google Scholar 

  3. Hartman C, Eliakim R, Shamir R (2009) Nutritional status and nutritional therapy in inflammatory bowel diseases. World J Gastroenterol 15:2570–2578

    Article  CAS  Google Scholar 

  4. Sawczenko A, Sandhu B (2003) Presenting features of inflammatory bowel disease in Great Britain and Ireland. Arch Dis Child 88:995–1000

    Article  CAS  Google Scholar 

  5. Sido B, Hack V, Hochlehnert A, Lipps H, Herfarth C, Droge W (1998) Impairment of intestinal glutathione synthesis in patients with inflammatory bowel disease. Gut 42:485–492

    Article  CAS  Google Scholar 

  6. Sokol R, Hoffenberg E (1996) Antioxidants in pediatric gastrointestinal disease. Pediatr Clin N Am 43:471–488

    Article  CAS  Google Scholar 

  7. O’Sullivan M, O’Morain C (2006) Nutrition in inflammatory bowel disease. Best Pract Res Clin Gastroenterol 20:561–573

    Article  Google Scholar 

  8. Lichtenstein G, Abreu M, Cohen R, Tremaine W (2006) American Gastroenterological Association Institute medical position statement on corticosteroids, immunomodulators, and infliximab in inflammatory bowel disease. Gastroenterology 130:935–939

    Article  Google Scholar 

  9. Dignass A, Lindsay J, Sturm A, Windsor A, Colombel J, Allez M, D’Haens G, D’Hoore A, Mantzaris G, Novacek G, Oresland T, Reinisch W, Sans M, Stange E, Vermeire S, Travis S, Van Assche G (2012) Second European evidence-based consensus on the diagnosis and management of ulcerative colitis part 2: current management. J Crohns Colitis 6:991–1030

    Article  Google Scholar 

  10. Canalis E, Bilezikian J, Angell A, Glustina A (2004) Perspectives on glucocorticoid-induced osteoporosis. Bone 34:593–598

    Article  CAS  Google Scholar 

  11. Lei X (2002) In vivo antioxidant role of glutathione peroxidase: evidence from knockout mice. Methods Enzymol 347:213–225

    Article  CAS  Google Scholar 

  12. Fang Y-Z, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18:872–879

    Article  CAS  Google Scholar 

  13. Huseby N-E, Sundkvist E, Svineng G (2009) Glutathione and sulfur containing amino acids: antioxidant and conjugation activities. In: Mazza G, Masella R (eds) Glutathione and sulfur amino acids in human health and disease. Wiley, New Jersey

    Google Scholar 

  14. Meister A (1974) Glutathione; Metabolism and function via the γ-glutamyl cycle. Life Sci 15:177–190

    Article  CAS  Google Scholar 

  15. Orlowski M, Meister A (1970) The γ-glutamyl cycle: a possible transport system for amino acids. Proc Natl Acad Sci 67:1248–1255

    Article  CAS  Google Scholar 

  16. Kozak E, Tate S (1982) Glutathione-degrading enzymes of microvillus membranes. J Biol Chem 257:6322–6327

    CAS  Google Scholar 

  17. Cappiello M, Lazzarotti A, Buono F, Scaloni A, D’Ambrosio C, Amodeo P, Mendez B, Pelosi P, Del Corso A, Mura U (2004) New role for leucyl aminopeptidase in glutathione turnover. Biochem J 378:35–44

    Article  CAS  Google Scholar 

  18. Iantomasi T, Marraccini P, Favilli F, Vincenzini M, Ferretti P, Tonelli F (1994) Glutathione metabolism in Crohn’s disease. Biochem Med Met Biol 53:87–91

    Article  CAS  Google Scholar 

  19. Karp S, Koch T (2006) Oxidative stress and antioxidants in inflammatory bowel disease. Dis Mon 52:199–207

    Article  Google Scholar 

  20. Holmes E, Yong S, Eiznhamer D, Kesavarzian A (1998) Glutathione content of colonic mucosa: evidence for oxidative damage in active ulcerative colitis. Dig Dis Sci 43:1088–1095

    Article  CAS  Google Scholar 

  21. Sturniolo G, Mestriner C, Lecis P, D’Odorico A, Venturi C, Irato P, Cecchetto A, Tropea A, Longo G, D’Inca R (1998) Altered plasma and mucosal concentrations of trace elements and antioxidants in active ulcerative colitis. Scand J Gastroentrol 33:644–649

    Article  CAS  Google Scholar 

  22. Jahoor F, Wykes L, Reeds P, Henry J, Del Rosario M, Frazer E (1995) Protein-deficient pigs cannot maintain reduced glutathione homeostasis when subjected to the stress of inflammation. J Nutr 125:1462–1472

    CAS  Google Scholar 

  23. Reid M, Badaloo A, Forrester T, Morlese J, Frazer M, Heird W, Jahoor F (2000) In vivo rates of erythrocyte glutathione synthesis in children with severe protein-energy malnutrition. Am J Physiol Endocrinol Metab 278:E405–E412

    CAS  Google Scholar 

  24. Wykes L, Ball R, Pencharz P (1993) Development and validation of a total parenteral nutritional model in the neonatal piglet. J Nutr 123:1248–1259

    CAS  Google Scholar 

  25. Benight N, Burrin D, Barbara S (2009) Intestinal metabolism of sulfur amino acids. In: Mazza G, Masella R (eds) Glutathione and sulfur amino acids in human health and disease. Wiley, New Jersey

    Google Scholar 

  26. Miller E, Ullrey D (1987) The pig as a model for human nutrition. Annu Rev Nutr 7:361–382

    Article  CAS  Google Scholar 

  27. Harding SV, Adegoke OA, Fraser KG, Marliss EB, Chevalier S, Kimball SR, Jefferson LS, Wykes LJ (2010) Maintaining adequate nutrition, not probiotic administration, prevents growth stunting and maintains skeletal muscle protein synthesis rates in a piglet model of colitis. Pediatr Res 67(3):268–273

    Article  CAS  Google Scholar 

  28. Harding S, Fraser K, Wykes L (2008) Probiotics stimulate liver and plasma protein synthesis in piglets with dextran sulfate-induced colitis and macronutrient restriction. J Nutr 138:2129–2135

    Article  CAS  Google Scholar 

  29. NRC (1998) Nutrient requirements of swine, 10th rev. National Academy Press, Washington

    Google Scholar 

  30. Canadian Councilon Animal Care (1993) Guide to the care and use of experimental animals. Bradda Printing Services Inc., Ottawa

    Google Scholar 

  31. Kim C, Kovacs-Nolan J, Yang C, Archbold T, Fan M, Mine Y (2009) L-cysteine supplementation attenuates local inflammation and restores gut homeostasis in a porcine model of colitis. Biochim Biophys Acta 1790:1161–1169

    Article  CAS  Google Scholar 

  32. Clapper M, Adrian R, Pfeiffer G, Kido K, Everley L, Cooper H, Murthy S (1999) Depletion of colonic detoxication enzyme activity in mice with dextran sulphate sodium-induced colitis. Aliment Pharmacol Ther 13:389–396

    Article  CAS  Google Scholar 

  33. Edalat M, Mannervik B, Axelsson L (2004) Selective expression of detoxifying glutathione transferases in mouse colon: effect of experimental colitis and the presence of bacteria. Histochem Cell Biol 122:151–159

    Article  CAS  Google Scholar 

  34. Bhaskar L, Ramakrishna B, Balasubramanian K (1995) Colonic mucosal antioxidant enzymes and lipid peroxide levels in normal subjects and patients with ulcerative colitis. J Gastroenterol Hepatol 10:140–143

    Article  CAS  Google Scholar 

  35. Kaplowitz N, Aw T, Ookhtens M (1985) The regulation of hepatic glutathione. Annu Rev Pharmacol Toxicol 25:715–744

    Article  CAS  Google Scholar 

  36. Meredith M, Reed D (1982) Status of the mitochondrial pool of glutathione in the isolated hepatocyte. J Biol Chem 257:3747–3753

    CAS  Google Scholar 

  37. Griffith O (1999) Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic Biol Med 27:922–935

    Article  CAS  Google Scholar 

  38. Ookhtens M, Kaplowitz N (1998) Role of the liver in interorgan homeostasis of glutathione and cyst(e)ine. Semin Liver Dis 18:313–329

    Article  CAS  Google Scholar 

  39. Badaloo A, Reid M, Forrester T, Heird W, Jahoor F (2002) Cysteine supplementation improves the erythrocyte glutathione synthesis rate in children with severe edematous malnutrition. Am J Clin Nutr 76:646–652

    CAS  Google Scholar 

  40. Badaloo A, Hsu J, Taylor-Bryan C, Green C, Reid M, Forrester T, Jahoor F (2012) Dietary cysteine is used more efficiently by children with severe acute malnutrition with edema compared with those without edema. Am J Clin Nutr 95:84–90

    Article  CAS  Google Scholar 

  41. Beutler E (1975) Red cell metabolism: a manual of biochemical methods, 2nd edn. Grune & Sratton, New York

    Google Scholar 

  42. Richie JJ, Abraham P, Leutzinger Y (1996) Long-term stability of blood glutathione and cysteine in humans. Clin Chem 42:1100–1105

    CAS  Google Scholar 

  43. Richie JJ, Skowronski L, Abraham P, Leutzinger Y (1996) Blood glutathione concentrations in a large-scale human study. Clin Chem 42:64–70

    CAS  Google Scholar 

  44. Miralles-Barrachina O, Savoye G, Belmonte-Zalar L, Hochain P, Ducrotte P, Hecketsweiller B, Lerebours E, Dechelotte P (1999) Low levels of glutathione in endoscopic biopsies of patients with Crohn’s colitis: the role of malnutrition. Clin Nutr 18:313–317

    Article  CAS  Google Scholar 

  45. Sen C (2000) Cellular thiols and redox-regulated signal transduction. Curr Top Cell Regul 36:1–30

    Article  CAS  Google Scholar 

  46. DeLeve L, Kaplowitz N (1991) Glutathione metabolism and its role in hepatotoxicity. Pharmacol Ther 52:287–305

    Article  CAS  Google Scholar 

  47. Meister A (1988) Glutathione. In: Aria I, Jakoby W, Popper H, Schachter D, Shafritz D (eds) The liver: biology and phathobiobiology, 2nd edn. Raven Press, New York, pp 401–417

    Google Scholar 

  48. Poon J, Josephy D (2012) Hydrolysis of S-aryl-cysteinylglycine conjugates catalyzed by porcine kidney cortex membrane dipeptidase. Xenobiotica 42:1178–1186

    Article  CAS  Google Scholar 

  49. Griffith O, Meister A (1979) Glutathione: interorgan translocation, turnover, and metabolism. Proc Natl Acad Sci 76:5606–5610

    Article  CAS  Google Scholar 

  50. Anderson M, Bridges R, Meister A (1980) Direct evidence for inter-organ transport of glutathione utilization involves γ-glutamyl transpeptidase. Biochem Biophys Res Commun 96:848–853

    Article  CAS  Google Scholar 

  51. Bartoli G, Haberle D, Sies H (1978) Glutathione efflux from perfused rat liver and its relation to glutathione uptake by the kidney. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

Funding

Partially funded by: (1) Natural Sciences and Engineering Research Council of Canada Grant Number 183710-09 (Wykes), (2) Canadian Foundation for Innovation Grant Number 23910 (Wykes) and (3) McGill University Graduate Excellence Fellowship (Vassilyadi).

Author contributions

All authors read and approved the final manuscript. Vassilyadi, Harding, Nitschmann and Wykes designed the research; Harding conducted the animal trial and isotope infusions; Vassilyadi and Nitschmann performed mass spectrometry; Vassilyadi performed statistical analysis; Vassilyadi, Harding, Nitschmann and Wykes wrote the paper; and Wykes had primary responsibility for the final content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda J. Wykes.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Supplementary material 2 (PDF 95 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vassilyadi, P., Harding, S.V., Nitschmann, E. et al. Experimental colitis and malnutrition differentially affect the metabolism of glutathione and related sulfhydryl metabolites in different tissues. Eur J Nutr 55, 1769–1776 (2016). https://doi.org/10.1007/s00394-015-0995-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-015-0995-x

Keywords

Navigation