Skip to main content
Log in

Fructose only in pregnancy provokes hyperinsulinemia, hypoadiponectinemia, and impaired insulin signaling in adult male, but not female, progeny

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Fructose intake from added sugars correlates with the epidemic rise in metabolic syndrome and cardiovascular diseases. However, consumption of beverages containing fructose is allowed during gestation. Recently, we found that an intake of fructose (10 % wt/vol) throughout gestation produces impaired fetal leptin signaling and hepatic steatosis. Therefore, we have investigated whether fructose intake during pregnancy produces subsequent changes in the progeny, when adult.

Methods

Fed 261-day-old male and female descendants from fructose-fed, control or glucose-fed mothers were used. Plasma was used to analyze glucose, insulin, leptin, and adiponectin. Hepatic expression of proteins related to insulin signaling was determined.

Results

Fructose intake throughout pregnancy did not produce alterations in the body weight of the progeny. Adult male progeny of fructose-fed mothers had elevated levels of insulin without a parallel increase in phosphorylation of protein kinase B. However, they displayed an augmented serine phosphorylation of insulin receptor substrate-2, indicating reduced insulin signal transduction. In agreement, adiponectin levels, which have been positively related to insulin sensitivity, were lower in male descendants from fructose-fed mothers than in the other two groups. Furthermore, mRNA levels for insulin-responsive genes were not affected (phosphoenolpyruvate carboxykinase, glucose-6-phosphatase) or they were decreased (sterol response element-binding protein-1c) in the livers of male progeny from fructose-supplemented rats. On the contrary, adult female rats from fructose-fed mothers did not exhibit any of these disturbances.

Conclusion

Maternal fructose, but not glucose, intake confined to the prenatal stage provokes impaired insulin signal transduction, hyperinsulinemia, and hypoadiponectinemia in adult male, but not female, progeny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Koletzko B, Broekaert I, Demmelmair H, Franke J, Hannibal I, Oberle D et al (2005) Protein intake in the first year of life: a risk factor for later obesity? The E.U. childhood obesity project. Adv Exp Med Biol 569:69–79

    Article  Google Scholar 

  2. Vickers MH, Gluckman PD, Coveny AH, Hofman PL, Cutfield WS, Gertler A, Breier BH, Harris M (2005) Neonatal leptin treatment reverses developmental programming. Endocrinology 146(10):4211–4216

    Article  CAS  Google Scholar 

  3. Beck B, Richy S, Archer ZA, Mercer JG (2012) Ingestion of carbohydrate-rich supplements during gestation programs insulin and leptin resistance but not body weight gain in adult rat offspring. Front Physiol 3:224

    Article  Google Scholar 

  4. Alzamendi A, Castrogiovanni D, Gaillard RC, Spinedi E, Giovambattista A (2010) Increased male offspring’s risk of metabolic-neuroendocrine dysfunction and overweight after fructose-rich diet intake by the lactating mother. Endocrinology 151:4214–4223

    Article  CAS  Google Scholar 

  5. Sedova L, Seda O, Kazdova L, Chylikova B, Hamet P, Tremblay J, Kren V, Krenova D (2007) Sucrose feeding during pregnancy and lactation elicits distinct metabolic response in offspring of an inbred genetic model of metabolic syndrome. Am J Physiol Endocrinol Metab 292:E1318–E1324

    Article  CAS  Google Scholar 

  6. Havel PJ (2005) Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr Rev 63:133–157

    Article  Google Scholar 

  7. Tappy L, Lê KA (2010) Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev 90:23–46

    Article  CAS  Google Scholar 

  8. Johnson RJ, Segal MS, Sautin Y, Nakagawa T, Feig DI, Kang DH, Gersch MS, Benner S, Sánchez-Lozada LG (2007) Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr 86:899–906

    CAS  Google Scholar 

  9. Johnson RJ, Pérez-Pozo SE, Sautin Y, Manitius J, Sánchez-Lozada LG, Feig DI, Shafiu M, Segal M, Glassock RJ, Shimada M, Roncal C, Nakagawa T (2009) Hypothesis: could excessive fructose intake and uric acid cause type 2 diabetes? Endocr Rev 30:96–116

    Article  CAS  Google Scholar 

  10. Taghibiglou CH, Carpentier A, Van Iderstine SC, Chen B, Rudy D, Aiton A, Lewis GF, Adeli K (2000) Mechanisms of hepatic very low-density lipoprotein overproduction in insulin resistance. Evidence for enhanced lipoprotein assembly, reduced intracellular ApoB degradation, and increased microsomal triglyceride transfer protein in a fructose-fed hamster model. J Biol Chem 275:8416–8425

    Article  CAS  Google Scholar 

  11. Roglans N, Vilà L, Farré M, Alegret M, Sánchez RM, Vázquez-Carrera M, Laguna JC (2007) Impairment of hepatic Stat-3 activation and reduction of PPARalpha activity in fructose-fed rats. Hepatology 45(3):778–788

    Article  CAS  Google Scholar 

  12. Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, Hatcher B, Cox CL, Dyachenko A, Zhang W, McGahan JP, Seibert A, Krauss RM, Chiu S, Schaefer EJ, Ai M, Otokozawa S, Nakajima K, Nakano T, Beysen C, Hellerstein MK, Berglund L, Havel PJ (2009) Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest 119:1322–1334

    Article  CAS  Google Scholar 

  13. Stanhope KL, Bremer AA, Medici V, Nakajima K, Ito Y, Nakano T, Chen G, Fong TH, Lee V, Menorca RI, Keim NL, Havel PJ (2011) Consumption of fructose and high fructose corn syrup increase postprandial triglycerides, LDL-cholesterol, and apolipoprotein-B in young men and women. J Clin Endocrinol Metab 96:E1596–E1605

    Article  CAS  Google Scholar 

  14. de Koning L, Malik VS, Kellogg MD, Rimm EB, Willett WC, Hu FB (2012) Sweetened beverage consumption, incident coronary heart disease, and biomarkers of risk in men. Circulation 125(14):1735–1741

    Article  Google Scholar 

  15. Vilà L, Roglans N, Perna V, Sánchez RM, Vázquez-Carrera M, Alegret M, Laguna JC (2011) Liver AMP/ATP ratio and fructokinase expression are related to gender differences in AMPK activity and glucose intolerance in rats ingesting liquid fructose. J Nutr Biochem 22(8):741–751

    Article  Google Scholar 

  16. Rodríguez L, Panadero MI, Roglans N, Otero P, Alvarez-Millán JJ, Laguna JC, Bocos C (2013) Fructose during pregnancy affects maternal and fetal leptin signalling. J Nutr Biochem 24:1709–1716

    Article  Google Scholar 

  17. Bayol SA, Simbi BH, Bertrand JA, Stickland NC (2008) Offspring from mothers fed a “junk food” diet in pregnancy and lactation exhibit exacerbated adiposity that is more pronounced in females. J Physiol 586(13):3219–3230

    Article  CAS  Google Scholar 

  18. Soria A, Chicco A, Mocchiutti N, Gutman RA, Lombardo YB, Martín-Hidalgo A, Herrera E (1996) A sucrose-rich diet affects triglyceride metabolism differently in pregnant and nonpregnant rats and has negative effects on fetal growth. J Nutr 126(10):2481–2486

    CAS  Google Scholar 

  19. Munilla MA, Herrera E (2000) Maternal hypertriglyceridemia during late pregnancy does not affect the increase in circulating triglycerides caused by the long-term consumption of a sucrose-rich diet by rats. J Nutr 130:2883–2888

    CAS  Google Scholar 

  20. Jen K-LC, Rochon C, Zhong S, Whitcomb L (1991) Fructose and sucrose feeding during pregnancy and lactation in rats changes maternal and pup fuel metabolism. J Nutr 121:1999–2005

    CAS  Google Scholar 

  21. Ching RH, Yeung LO, Tse IM, Sit WH, Li ET (2011) Supplementation of bitter melon to rats fed a high-fructose diet during gestation and lactation ameliorates fructose-induced dyslipidemia and hepatic oxidative stress in male offspring. J Nutr 141(9):1664–1672

    Article  CAS  Google Scholar 

  22. Rawana S, Calrk K, Zhong S, Buison A, Chackunkal S, Jen K-LC (1993) Low dose fructose ingestion during gestation and lactation affects carbohydrate metabolism in rat dams and their offspring. J Nutr 123:2158–2165

    CAS  Google Scholar 

  23. Vickers MH, Clayton ZE, Yap C, Sloboda DM (2011) Maternal fructose intake during pregnancy and lactation alters placental growth and leads to sex-specific changes in fetal and neonatal endocrine function. Endocrinology 152(4):1378–1387

    Article  CAS  Google Scholar 

  24. Zhang ZY, Zeng JJ, Kjaergaard M, Guan N, Raun K, Nilsson C, Wang MW (2011) Effects of a maternal diet supplemented with chocolate and fructose beverage during gestation and lactation on rat dams and their offspring. Clin Exp Pharmacol Physiol 38(9):613–622

    Article  Google Scholar 

  25. Sardinha FLC, Fernandes FS, Tavares do Carmo MG, Herrera E (2013) Sex-dependent nutritional programming: fish oil intake during early pregnancy in rats reduces age-dependent insulin resistance in male, but not female, offspring. Am J Physiol Regul Integr Comp Physiol 304:R313–R320

    Article  CAS  Google Scholar 

  26. Bligh EG, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  Google Scholar 

  27. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  Google Scholar 

  28. Shimomura I, Matsuda M, Hammer RE, Bashmakov Y, Brown MS, Goldstein JL (2000) Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Mol Cell 6:77–86

    Article  CAS  Google Scholar 

  29. Elliott SS, Keim NL, Stern JS, Teff KL, Havel PJ (2002) Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr 76(5):911–922

    CAS  Google Scholar 

  30. Laclaustra M, Corella D, Ordovas JM (2007) Metabolic syndrome pathophysiology: the role of adipose tissue. Nutr Metab Cardiovasc Dis 17:125–139

    Article  CAS  Google Scholar 

  31. Sevillano J, de Castro J, Bocos C, Herrera E, Ramos MP (2007) Role of IRS-1 serine 307 phosphorylation and adiponectin in adipose tissue insulin resistance in late pregnancy. Endocrinology 148(12):5933–5942

    Article  CAS  Google Scholar 

  32. Fritsche L, Weigert C, Haring HU, Lehmann R (2008) How insulin receptor substrate proteins regulate the metabolic capacity of the liver—implications for health and disease. Curr Med Chem 15:1316–1329

    Article  CAS  Google Scholar 

  33. Weickert MO, Pfeiffer AFH (2006) Signalling mechanisms linking hepatic glucose and lipid metabolism. Diabetologia 49:1732–1741

    Article  CAS  Google Scholar 

  34. Sharfi H, Eldar-Finkelman H (2008) Sequential phosphorylation of insulin receptor substrate-2 by glycogen synthase kinase-3 and c-Jun NH2-terminal kinase plays a role in hepatic insulin signaling. Am J Physiol Endocrinol Metab 294(2):E307–E315

    Article  CAS  Google Scholar 

  35. Valverde AM, Burks DJ, Fabregat I, Fisher TL, Carretero J, White MF, Benito M (2003) Molecular mechanisms of insulin resistance in IRS-2-deficient hepatocytes. Diabetes 52:2239–2248

    Article  CAS  Google Scholar 

  36. Brown MS, Goldstein JL (2008) Selective versus total insulin resistance: a pathogenic paradox. Cell Metab 7(2):95–96

    Article  CAS  Google Scholar 

  37. Srinivasan M, Dodds C, Ghanim H, Gao T, Ross PJ, Browne RW, Dandona P, Patel MS (2008) Maternal obesity and fetal programming: effects of a high-carbohydrate nutritional modification in the immediate postnatal life of female rats. Am J Physiol Endocrinol Metab 295:E895–E903

    Article  CAS  Google Scholar 

  38. Vickers MH, Reddy S, Ikenasio BA, Breier BH (2001) Dysregulation of the adipoinsular axis—a mechanism for the pathogenesis of hyperleptinemia and adipogenic diabetes induced by fetal programming. J Endocrinol 170:323–332

    Article  CAS  Google Scholar 

  39. Rodríguez L, Otero P, Panadero MI, Rodrigo S, Álvarez-Millán JJ, Bocos C (2015) Maternal fructose intake induces insulin resistance and oxidative stress in male, but not female, offspring. J Nutr Metab 2015:158091. doi:10.1155/2015/158091

    Article  Google Scholar 

  40. Shapiro A, Mu W, Roncal C, Cheng K-Y, Johnson RJ, Scarpace PJ (2008) Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high-fat feeding. Am J Physiol Regul Integr Comp Physiol 295:R1370–R1375

    Article  CAS  Google Scholar 

  41. Panadero MI, Vidal H, Herrera E, Bocos C (2001) Nutritionally induced changes in the peroxisome proliferator activated receptor-α gene expression in liver of suckling rats are dependent on insulinaemia. Arch Biochem Biophys 394(2):182–188

    Article  CAS  Google Scholar 

  42. Srinivasan M, Mitrani P, Sadhanandan G, Dodds C, Shbeir-ElDika S, Thamotharan S, Ghanim H, Dandona P, Devaskar SU, Patel MS (2008) A high-carbohydrate diet in the immediate postnatal life of rats induces adaptations predisposing to adult-onset obesity. J Endocrinol 197:565–574

    Article  CAS  Google Scholar 

  43. Howie GJ, Sloboda DM et al (2009) Maternal nutritional history predicts obesity in adult offspring independent of postnatal diet. J Physiol 587(Pt 4):905–915

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Jose M. Garrido for his help in handling the rats and Brian Crilly for his editorial help. This work was supported by grants from the Instituto de Salud Carlos III-Subdirección General de Evaluación y Fomento de la Investigación (PI-09/02192), European Community FEDER funds, SAF2013-42982-R and from the Generalitat of Catalonia (2013SGR0066), as well as the Fundación Universitaria San Pablo-CEU (PC 09/2012). Silvia Rodrigo is a FUSP-CEU fellowship.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Bocos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez, L., Panadero, M.I., Roglans, N. et al. Fructose only in pregnancy provokes hyperinsulinemia, hypoadiponectinemia, and impaired insulin signaling in adult male, but not female, progeny. Eur J Nutr 55, 665–674 (2016). https://doi.org/10.1007/s00394-015-0886-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-015-0886-1

Keywords

Navigation