Skip to main content

Advertisement

Log in

Lactobacillus plantarum CECT 7315/7316 intake modulates the acute and chronic innate inflammatory response

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Probiotics may confer health benefits for the host. Although Lactobacillus has demonstrated to stimulate the immune response, only a few strains have demonstrated immunomodulatory properties. The newly identified Lactobacillus plantarum strains CECT7315 and CECT7316 (LP3457) seem to boost the immune system in individuals that immune decline. We aimed to investigate whether LP3457 protects against inflammation and the mechanism behind.

Methods

LP3457 potential anti-inflammatory effects were assessed in an acute model LPS-induced inflammation in healthy rats and in a chronic model of low-grade inflammation in Zucker diabetic fatty (ZDF) rats. Wistar rats received LP3457 or placebo control for 20 days. Lipopolysaccharide (LPS; 1 mg/kg) was injected intraperitoneally at day 14, and animals were sacrificed 6 days after. Blood was collected at baseline (day 0) and consecutively at day 7, 14, 17, and 20 for haematological evaluation and assessment of anti-inflammatory/pro-inflammatory systemic markers. Myeloperoxidase activity was investigated in the ileum. ZDF rats received LP3457 or placebo control during 8 weeks, and changes in inflammasome-related transcripts were assessed in the ileum.

Results

LPS induced a comparable and significant leucocytosis 3 days post-injection (day 17) in both LP3457-treated and LP3457-untreated rats. However, the probiotic supplementation attenuated IL-1β, IL-6, and CRP release and increased anti-inflammatory IL-10 levels 6 days post-LPS induction (p < 0.05 vs. placebo). LP3457-supplemented animals also displayed lower intestinal myeloperoxidase activity (p < 0.05 vs. placebo). Chronic administration of LP3457 to ZDF rats resulted in a significant downregulation of the inflammasome signalling pathway (p < 0.05 vs. placebo).

Conclusions

Intake of LP3457 attenuates both acute endotoxemia-induced and chronic metabolically induced inflammatory reactions and the inflammasome signalling pathway. The stabilization and regulation of the gut microbiota is an important target for reducing the impact of organ-related inflammatory reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361(9356):512–519. doi:10.1016/S0140-6736(03)12489-0

    Article  Google Scholar 

  2. Marteau P, Seksik P, Jian R (2002) Probiotics and intestinal health effects: a clinical perspective. Br J Nutr 88(Suppl 1):S51–S57. doi:10.1079/BJN2002629

    Article  CAS  Google Scholar 

  3. Rafter J (2002) Lactic acid bacteria and cancer: mechanistic perspective. Br J Nutr 88(Suppl 1):S89–S94. doi:10.1079/BJN2002633

    Article  CAS  Google Scholar 

  4. Matricardi PM, Bjorksten B, Bonini S, Bousquet J, Djukanovic R, Dreborg S, Gereda J, Malling HJ, Popov T, Raz E, Renz H, Wold A, Force ET (2003) Microbial products in allergy prevention and therapy. Allergy 58(6):461–471

    Article  CAS  Google Scholar 

  5. Macpherson A, Khoo UY, Forgacs I, Philpott-Howard J, Bjarnason I (1996) Mucosal antibodies in inflammatory bowel disease are directed against intestinal bacteria. Gut 38(3):365–375

    Article  CAS  Google Scholar 

  6. Fedorak RN, Madsen KL (2004) Probiotics and the management of inflammatory bowel disease. Inflamm Bowel Dis 10(3):286–299

    Article  Google Scholar 

  7. Hart AL, Stagg AJ, Kamm MA (2003) Use of probiotics in the treatment of inflammatory bowel disease. J Clin Gastroenterol 36(2):111–119

    Article  Google Scholar 

  8. Matsuzaki T, Yamazaki R, Hashimoto S, Yokokura T (1997) Antidiabetic effects of an oral administration of Lactobacillus casei in a non-insulin-dependent diabetes mellitus (NIDDM) model using KK-Ay mice. Endocr J 44(3):357–365

    Article  CAS  Google Scholar 

  9. Tabuchi M, Ozaki M, Tamura A, Yamada N, Ishida T, Hosoda M, Hosono A (2003) Antidiabetic effect of Lactobacillus GG in streptozotocin-induced diabetic rats. Biosci Biotechnol Biochem 67(6):1421–1424

    Article  CAS  Google Scholar 

  10. Yadav H, Jain S, Sinha PR (2007) Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition 23(1):62–68. doi:10.1016/j.nut.2006.09.002

    Article  Google Scholar 

  11. Food and Health Agricultural Organization of the United Nations and World Health Organization (2002) Guidelines for the evaluation of probiotics in food. Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food

  12. Sanders ME (2008) Probiotics: definition, sources, selection, and uses. Clin Infect Dis 46(Suppl 2):S58–S61. doi:10.1086/523341 discussion S144–151

    Article  Google Scholar 

  13. Guarner F, Khan AG, Garisch J, Eliakim R, Gangl A, Thomson A, Krabshuis J, Lemair T, Kaufmann P, de Paula JA, Fedorak R, F R, Sanders ME, Szajewska H, Ramakrishna BS, Karakan T, Kim N, World Gastroenterology O (2012) World Gastroenterology Organisation Global Guidelines: probiotics and prebiotics October 2011. J Clin Gastroenterol 46(6):468–481. doi:10.1097/MCG.0b013e3182549092

    Article  Google Scholar 

  14. Guarner F, Schaafsma GJ (1998) Probiotics. Int J Food Microbiol 39(3):237–238

    Article  CAS  Google Scholar 

  15. Johansson ML, Molin G, Jeppsson B, Nobaek S, Ahrne S, Bengmark S (1993) Administration of different Lactobacillus strains in fermented oatmeal soup: in vivo colonization of human intestinal mucosa and effect on the indigenous flora. Appl Environ Microbiol 59(1):15–20

    CAS  Google Scholar 

  16. Bosch M, Rodriguez M, Garcia F, Fernandez E, Fuentes MC, Cune J (2012) Probiotic properties of Lactobacillus plantarum CECT 7315 and CECT 7316 isolated from faeces of healthy children. Lett Appl Microbiol 54(3):240–246. doi:10.1111/j.1472-765X.2011.03199.x

    Article  CAS  Google Scholar 

  17. Martinez V LQ, Gassull MA, Cuñé J, Espadaler J, Cabré E, et al (2009) Strains of Lactobacillus plantarum as probiotics. European Patent 07121817.6. European Patent 071218176

  18. Mane J, Pedrosa E, Loren V, Gassull MA, Espadaler J, Cune J, Audivert S, Bonachera MA, Cabre E (2011) A mixture of Lactobacillus plantarum CECT 7315 and CECT 7316 enhances systemic immunity in elderly subjects. A dose-response, double-blind, placebo-controlled, randomized pilot trial. Nutr Hosp 26(1):228–235

    CAS  Google Scholar 

  19. Sanders M (2000) Considerations for use of probiotic bacteria to modulate human health. J Nutr 130:384S–390S

    CAS  Google Scholar 

  20. Pineiro M, Stanton C (2007) Probiotic bacteria: legislative framework—requirements to evidence basis. J Nutr 137(3 Suppl 2):850S–853S

    CAS  Google Scholar 

  21. Clark JB, Palmer CJ, Shaw WN (1983) The diabetic Zucker fatty rat. Proc Soc Exp Biol Med Soc Exp Biol Med 173(1):68–75

    Article  CAS  Google Scholar 

  22. Sjoholm A, Nystrom T (2006) Inflammation and the etiology of type 2 diabetes. Diabetes/Metab Res Rev 22(1):4–10. doi:10.1002/dmrr.568

    Article  Google Scholar 

  23. Donath MY, Schumann DM, Faulenbach M, Ellingsgaard H, Perren A, Ehses JA (2008) Islet inflammation in type 2 diabetes: from metabolic stress to therapy. Diabetes Care 31(Suppl 2):S161–S164. doi:10.2337/dc08-s243

    Article  CAS  Google Scholar 

  24. Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11(2):98–107. doi:10.1038/nri2925

    Article  CAS  Google Scholar 

  25. Tofovic SP, Jackson EK (2003) Rat models of the metabolic syndrome. Methods in Molecular Medicine™. Renal Dis 86:2029–2046

    Google Scholar 

  26. Peterson RG (2000) The zucker diabetic fatty (ZDF) rat. In: Shafrir E (ed) Animal models of diabetes: frontiers in research, pp 103-118

  27. He W, Fong Y, Marano MA, Gershenwald JE, Yurt RW, Moldawer LL, Lowry SF (1992) Tolerance to endotoxin prevents mortality in infected thermal injury: association with attenuated cytokine responses. J Infect Dis 165(5):859–864

    Article  CAS  Google Scholar 

  28. Lehner MD, Ittner J, Bundschuh DS, van Rooijen N, Wendel A, Hartung T (2001) Improved innate immunity of endotoxin-tolerant mice increases resistance to Salmonella enterica serovar typhimurium infection despite attenuated cytokine response. Infect Immun 69(1):463–471. doi:10.1128/IAI.69.1.463-471.2001

    Article  CAS  Google Scholar 

  29. Andonegui G, Goyert SM, Kubes P (2002) Lipopolysaccharide-induced leukocyte-endothelial cell interactions: a role for CD14 versus toll-like receptor 4 within microvessels. J Immunol 169(4):2111–2119

    Article  CAS  Google Scholar 

  30. Gionchetti P, Rizzello F, Lammers KM, Morselli C, Sollazzi L, Davies S, Tambasco R, Calabrese C, Campieri M (2006) Antibiotics and probiotics in treatment of inflammatory bowel disease. World J Gastroenterol 12(21):3306–3313

    CAS  Google Scholar 

  31. Badimon L (2012) Interleukin-18: a potent pro-inflammatory cytokine in atherosclerosis. Cardiovasc Res 96(2):172–175. doi:10.1093/cvr/cvs226 discussion 176–180

    Article  CAS  Google Scholar 

  32. Benetti E, Chiazza F, Patel NS, Collino M (2013) The NLRP3 inflammasome as a novel player of the intercellular crosstalk in metabolic disorders. Mediators Inflamm 2013:678627. doi:10.1155/2013/678627

    Google Scholar 

  33. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):research0034

    Article  Google Scholar 

  34. Mazmanian SK, Kasper DL (2006) The love-hate relationship between bacterial polysaccharides and the host immune system. Nat Rev Immunol 6(11):849–858. doi:10.1038/nri1956

    Article  CAS  Google Scholar 

  35. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9(5):313–323. doi:10.1038/nri2515

    Article  CAS  Google Scholar 

  36. Park DY, Ahn YT, Park SH, Huh CS, Yoo SR, Yu R, Sung MK, McGregor RA, Choi MS (2013) Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity. PLoS One 8(3):e59470. doi:10.1371/journal.pone.0059470

    Article  CAS  Google Scholar 

  37. Bosch M, Mendez M, Perez M, Farran A, Fuentes MC, Cune J (2012) Lactobacillus plantarum CECT7315 and CECT7316 stimulate immunoglobulin production after influenza vaccination in elderly. Nutr Hosp 27(2):504–509. doi:10.1590/S0212-16112012000200023

    CAS  Google Scholar 

  38. Bone RC (1991) Sepsis, the sepsis syndrome, multi-organ failure: a plea for comparable definitions. Ann Intern Med 114(4):332–333

    Article  CAS  Google Scholar 

  39. Ansar W, Ghosh S (2013) C-reactive protein and the biology of disease. Immunol Res 56(1):131–142. doi:10.1007/s12026-013-8384-0

    Article  CAS  Google Scholar 

  40. Macintyre SS, Schultz D, Kushner I (1982) Biosynthesis of C-reactive protein. Ann N Y Acad Sci 389:76–87

    Article  CAS  Google Scholar 

  41. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140(6):821–832. doi:10.1016/j.cell.2010.01.040

    Article  CAS  Google Scholar 

  42. Imani Fooladi AA, Mousavi SF, Seghatoleslami S, Yazdani S, Nourani MR (2011) Toll-like receptors: role of inflammation and commensal bacteria. Inflamm Allergy Drug Targets 10(3):198–207

    Article  Google Scholar 

  43. Sabroe I, Whyte MK (2007) Toll-like receptor (TLR)-based networks regulate neutrophilic inflammation in respiratory disease. Biochem Soc Trans 35(Pt 6):1492–1495. doi:10.1042/BST0351492

    Article  CAS  Google Scholar 

  44. Lau D, Mollnau H, Eiserich JP, Freeman BA, Daiber A, Gehling UM, Brummer J, Rudolph V, Munzel T, Heitzer T, Meinertz T, Baldus S (2005) Myeloperoxidase mediates neutrophil activation by association with CD11b/CD18 integrins. Proc Natl Acad Sci USA 102(2):431–436. doi:10.1073/pnas.0405193102

    Article  CAS  Google Scholar 

  45. Karmakar M, Sun Y, Hise AG, Rietsch A, Pearlman E (2012) Cutting edge: IL-1beta processing during Pseudomonas aeruginosa infection is mediated by neutrophil serine proteases and is independent of NLRC4 and caspase-1. J Immunol 189(9):4231–4235. doi:10.4049/jimmunol.1201447

    Article  CAS  Google Scholar 

  46. Grimbaldeston MA, Nakae S, Kalesnikoff J, Tsai M, Galli SJ (2007) Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat Immunol 8(10):1095–1104. doi:10.1038/ni1503

    Article  CAS  Google Scholar 

  47. Furze RC, Rankin SM (2008) Neutrophil mobilization and clearance in the bone marrow. Immunology 125(3):281–288. doi:10.1111/j.1365-2567.2008.02950.x

    Article  CAS  Google Scholar 

  48. Spranger J, Kroke A, Mohlig M, Hoffmann K, Bergmann MM, Ristow M, Boeing H, Pfeiffer AF (2003) Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 52(3):812–817

    Article  CAS  Google Scholar 

  49. Larsen CM, Faulenbach M, Vaag A, Ehses JA, Donath MY, Mandrup-Poulsen T (2009) Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes Care 32(9):1663–1668. doi:10.2337/dc09-0533

    Article  CAS  Google Scholar 

  50. Larsen CM, Faulenbach M, Vaag A, Volund A, Ehses JA, Seifert B, Mandrup-Poulsen T, Donath MY (2007) Interleukin-1-receptor antagonist in type 2 diabetes mellitus. New Engl J Med 356(15):1517–1526. doi:10.1056/NEJMoa065213

    Article  CAS  Google Scholar 

  51. Arora T, Anastasovska J, Gibson G, Tuohy K, Sharma RK, Bell J, Frost G (2012) Effect of Lactobacillus acidophilus NCDC 13 supplementation on the progression of obesity in diet-induced obese mice. Br J Nutr 108(8):1382–1389. doi:10.1017/S0007114511006957

    Article  CAS  Google Scholar 

  52. Yin YN, Yu QF, Fu N, Liu XW, Lu FG (2010) Effects of four Bifidobacteria on obesity in high-fat diet induced rats. World J Gastroenterol 16(27):3394–3401

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present study was supported by the company CARINSA Group through HENUFOOD Project (CEN-20101016) which is part of the CENIT program from Spanish Minister of Economy and Competitiveness. This work was also supported by the Health National Program SAF2013-42962-R (to L.B.) and SAF 2012-40208 (to G.V.) from the Spanish Ministry of Science; Institute Carlos III (to L.B.); and CEN-20101016 (HENUFOOD) CDTI-Spanish Ministry of Competitivity and Economy (MINECO) (to L.B.). We thank Fundación Jesus Serra, Barcelona, for their continuous support. G.V. is a recipient of a contract from the Innovation and Science Spanish Ministry (RyC-2009-5495, MICINN, Spain). The authors also thank Josep Moreno for their technical support.

Conflict of interest

The authors declare that they have no conflict of interest. All authors have read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Badimon.

Additional information

Gemma Vilahur and Sergi López-Bernal have contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilahur, G., López-Bernal, S., Camino, S. et al. Lactobacillus plantarum CECT 7315/7316 intake modulates the acute and chronic innate inflammatory response. Eur J Nutr 54, 1161–1171 (2015). https://doi.org/10.1007/s00394-014-0794-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-014-0794-9

Keywords

Navigation