Skip to main content
Log in

Angiotensin II alters the expression of duodenal iron transporters, hepatic hepcidin, and body iron distribution in mice

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Angiotensin II (ANG II) has been shown to affect iron metabolism through alteration of iron transporters, leading to increased cellular and tissue iron contents. Serum ferritin, a marker of body iron storage, is elevated in various cardiovascular diseases, including hypertension. However, the associated changes in iron absorption and the mechanism underlying increased iron content in a hypertensive state remain unclear.

Methods

The C57BL6/J mice were treated with ANG II to generate a model of hypertension. Mice were divided into three groups: (1) control, (2) ANG II-treated, and (3) ANG II-treated and ANG II receptor blocker (ARB)-administered (ANG II–ARB) groups.

Results

Mice treated with ANG II showed increased serum ferritin levels compared to vehicle-treated control mice. In ANG II-treated mice, duodenal divalent metal transporter-1 and ferroportin (FPN) expression levels were increased and hepatic hepcidin mRNA expression and serum hepcidin concentration were reduced. The mRNA expression of bone morphogenetic protein 6 and CCAAT/enhancer-binding protein alpha, which are regulators of hepcidin, was also down-regulated in the livers of ANG II-treated mice. In terms of tissue iron content, macrophage iron content and renal iron content were increased by ANG II treatment, and these increases were associated with reduced expression of transferrin receptor 1 and FPN and increased expression of ferritin. These changes induced by ANG II treatment were ameliorated by the administration of an ARB.

Conclusions

Angiotensin II (ANG II) altered the expression of duodenal iron transporters and reduced hepcidin levels, contributing to the alteration of body iron distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kruszewski M (2003) Labile iron pool: the main determinant of cellular response to oxidative stress. Mutat Res 531(1–2):81–92

    Article  CAS  Google Scholar 

  2. Cairo G, Recalcati S, Pietrangelo A, Minotti G (2002) The iron regulatory proteins: targets and modulators of free radical reactions and oxidative damage. Free Radic Biol Med 32(12):1237–1243

    Article  CAS  Google Scholar 

  3. Khan ZA, Farhangkhoee H, Barbin YP, Adams PC, Chakrabarti S (2005) Glucose-induced regulation of novel iron transporters in vascular endothelial cell dysfunction. Free Radic Res 39(11):1203–1210. doi:10.1080/10715760500143254

    Article  CAS  Google Scholar 

  4. Nanami M, Ookawara T, Otaki Y, Ito K, Moriguchi R, Miyagawa K, Hasuike Y, Izumi M, Eguchi H, Suzuki K, Nakanishi T (2005) Tumor necrosis factor-alpha-induced iron sequestration and oxidative stress in human endothelial cells. Arterioscler Thromb Vasc Biol 25(12):2495–2501. doi:10.1161/01.ATV.0000190610.63878.20

    Article  CAS  Google Scholar 

  5. Mehta PK, Griendling KK (2007) Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 292(1):C82–C97. doi:10.1152/ajpcell.00287.2006

    Article  CAS  Google Scholar 

  6. Ogihara T, Asano T, Ando K, Chiba Y, Sakoda H, Anai M, Shojima N, Ono H, Onishi Y, Fujishiro M, Katagiri H, Fukushima Y, Kikuchi M, Noguchi N, Aburatani H, Komuro I, Fujita T (2002) Angiotensin II-induced insulin resistance is associated with enhanced insulin signaling. Hypertension 40(6):872–879

    Article  CAS  Google Scholar 

  7. Henriksen EJ, Jacob S, Kinnick TR, Teachey MK, Krekler M (2001) Selective angiotensin II receptor antagonism reduces insulin resistance in obese Zucker rats. Hypertension 38(4):884–890

    Article  CAS  Google Scholar 

  8. Abuissa H, Jones PG, Marso SP, O’Keefe JH Jr (2005) Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for prevention of type 2 diabetes: a meta-analysis of randomized clinical trials. J Am Coll Cardiol 46(5):821–826. doi:10.1016/j.jacc.2005.05.051

    Article  CAS  Google Scholar 

  9. Ishizaka N, Saito K, Noiri E, Sata M, Ikeda H, Ohno A, Ando J, Mori I, Ohno M, Nagai R (2005) Administration of ANG II induces iron deposition and upregulation of TGF-beta1 mRNA in the rat liver. Am J Physiol Regul Integr Comp Physiol 288(4):R1063–R1070. doi:10.1152/ajpregu.00281.2004

    Article  CAS  Google Scholar 

  10. Ishizaka N, Aizawa T, Yamazaki I, Usui S, Mori I, Kurokawa K, Tang SS, Ingelfinger JR, Ohno M, Nagai R (2002) Abnormal iron deposition in renal cells in the rat with chronic angiotensin II administration. Lab Invest 82(1):87–96

    Article  CAS  Google Scholar 

  11. Ishizaka N, Saito K, Mitani H, Yamazaki I, Sata M, Usui S, Mori I, Ohno M, Nagai R (2002) Iron overload augments angiotensin II-induced cardiac fibrosis and promotes neointima formation. Circulation 106(14):1840–1846

    Article  CAS  Google Scholar 

  12. Ishizaka N, Saito K, Mori I, Matsuzaki G, Ohno M, Nagai R (2005) Iron chelation suppresses ferritin upregulation and attenuates vascular dysfunction in the aorta of angiotensin II-infused rats. Arterioscler Thromb Vasc Biol 25(11):2282–2288. doi:10.1161/01.ATV.0000181763.57495.2b

    Article  CAS  Google Scholar 

  13. Ishizaka N, Saito K, Furuta K, Matsuzaki G, Koike K, Noiri E, Nagai R (2007) Angiotensin II-induced regulation of the expression and localization of iron metabolism-related genes in the rat kidney. Hypertens Res 30(2):195–202. doi:10.1291/hypres.30.195

    Article  CAS  Google Scholar 

  14. Tajima S, Tsuchiya K, Horinouchi Y, Ishizawa K, Ikeda Y, Kihira Y, Shono M, Kawazoe K, Tomita S, Tamaki T (2010) Effect of angiotensin II on iron-transporting protein expression and subsequent intracellular labile iron concentration in human glomerular endothelial cells. Hypertens Res 33(7):713–721. doi:10.1038/hr.2010.63

    Article  CAS  Google Scholar 

  15. Piperno A, Trombini P, Gelosa M, Mauri V, Pecci V, Vergani A, Salvioni A, Mariani R, Mancia G (2002) Increased serum ferritin is common in men with essential hypertension. J Hypertens 20(8):1513–1518

    Article  CAS  Google Scholar 

  16. Wrede CE, Buettner R, Bollheimer LC, Scholmerich J, Palitzsch KD, Hellerbrand C (2006) Association between serum ferritin and the insulin resistance syndrome in a representative population. Eur J Endocrinol 154(2):333–340. doi:10.1530/eje.1.02083

    Article  CAS  Google Scholar 

  17. Ikeda Y, Tajima S, Izawa-Ishizawa Y, Kihira Y, Ishizawa K, Tomita S, Tsuchiya K, Tamaki T (2012) Estrogen regulates hepcidin expression via GPR30-BMP6-dependent signaling in hepatocytes. PLoS One 7(7):e40465. doi:10.1371/journal.pone.0040465

    Article  CAS  Google Scholar 

  18. Ikeda Y, Enomoto H, Tajima S, Izawa-Ishizawa Y, Kihira Y, Ishizawa K, Tomita S, Tsuchiya K, Tamaki T (2013) Dietary iron restriction inhibits progression of diabetic nephropathy in db/db mice. Am J Physiol Renal Physiol 304(7):F1028–F1036. doi:10.1152/ajprenal.00473.2012

    Article  CAS  Google Scholar 

  19. Tajima S, Ikeda Y, Sawada K, Yamano N, Horinouchi Y, Kihira Y, Ishizawa K, Izawa-Ishizawa Y, Kawazoe K, Tomita S, Minakuchi K, Tsuchiya K, Tamaki T (2012) Iron reduction by deferoxamine leads to amelioration of adiposity via the regulation of oxidative stress and inflammation in obese and type 2 diabetes KKAy mice. Am J Physiol Endocrinol Metab 302(1):E77–E86. doi:10.1152/ajpendo.00033.2011

    Article  CAS  Google Scholar 

  20. Mastrogiannaki M, Matak P, Keith B, Simon MC, Vaulont S, Peyssonnaux C (2009) HIF-2alpha, but not HIF-1alpha, promotes iron absorption in mice. J Clin Invest 119(5):1159–1166. doi:10.1172/JCI38499

    Article  CAS  Google Scholar 

  21. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306(5704):2090–2093. doi:10.1126/science.1104742

    Article  CAS  Google Scholar 

  22. Andriopoulos B Jr, Corradini E, Xia Y, Faasse SA, Chen S, Grgurevic L, Knutson MD, Pietrangelo A, Vukicevic S, Lin HY, Babitt JL (2009) BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nat Genet 41(4):482–487. doi:10.1038/ng.335

    Article  CAS  Google Scholar 

  23. Meynard D, Kautz L, Darnaud V, Canonne-Hergaux F, Coppin H, Roth MP (2009) Lack of the bone morphogenetic protein BMP6 induces massive iron overload. Nat Genet 41(4):478–481. doi:10.1038/ng.320

    Article  CAS  Google Scholar 

  24. Courselaud B, Pigeon C, Inoue Y, Inoue J, Gonzalez FJ, Leroyer P, Gilot D, Boudjema K, Guguen-Guillouzo C, Brissot P, Loreal O, Ilyin G (2002) C/EBPalpha regulates hepatic transcription of hepcidin, an antimicrobial peptide and regulator of iron metabolism. Cross-talk between C/EBP pathway and iron metabolism. J Biol Chem 277(43):41163–41170. doi:10.1074/jbc.M202653200

    Article  CAS  Google Scholar 

  25. Cohen LA, Gutierrez L, Weiss A, Leichtmann-Bardoogo Y, Zhang DL, Crooks DR, Sougrat R, Morgenstern A, Galy B, Hentze MW, Lazaro FJ, Rouault TA, Meyron-Holtz EG (2010) Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway. Blood 116(9):1574–1584. doi:10.1182/blood-2009-11-253815

    Article  CAS  Google Scholar 

  26. Atlas SA (2007) The renin-angiotensin aldosterone system: pathophysiological role and pharmacologic inhibition. J Manag Care Pharm 13(8 Suppl B):9–20

    Google Scholar 

  27. Catt KJ, Cain MD, Zimmet PZ, Cran E (1969) Blood angiotensin II levels of normal and hypertensive subjects. Br Med J 1(5647):819–821

    Article  CAS  Google Scholar 

  28. Jacobs A, Worwood M (1975) Ferritin in serum. Clinical and biochemical implications. N Engl J Med 292(18):951–956. doi:10.1056/NEJM197505012921805

    Article  CAS  Google Scholar 

  29. Yeh KY, Yeh M, Watkins JA, Rodriguez-Paris J, Glass J (2000) Dietary iron induces rapid changes in rat intestinal divalent metal transporter expression. Am J Physiol Gastrointest Liver physiol 279(5):G1070–G1079

    CAS  Google Scholar 

  30. Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S, Andrews NC (2005) The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab 1(3):191–200. doi:10.1016/j.cmet.2005.01.003

    Article  CAS  Google Scholar 

  31. Park CH, Valore EV, Waring AJ, Ganz T (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 276(11):7806–7810. doi:10.1074/jbc.M008922200

    Article  CAS  Google Scholar 

  32. Brasse-Lagnel C, Karim Z, Letteron P, Bekri S, Bado A, Beaumont C (2011) Intestinal DMT1 cotransporter is down-regulated by hepcidin via proteasome internalization and degradation. Gastroenterology 140(4):1261–1271 e1261. doi:10.1053/j.gastro.2010.12.037

  33. Frazer DM, Wilkins SJ, Becker EM, Vulpe CD, McKie AT, Trinder D, Anderson GJ (2002) Hepcidin expression inversely correlates with the expression of duodenal iron transporters and iron absorption in rats. Gastroenterology 123(3):835–844

    Article  CAS  Google Scholar 

  34. Pigeon C, Ilyin G, Courselaud B, Leroyer P, Turlin B, Brissot P, Loreal O (2001) A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem 276(11):7811–7819. doi:10.1074/jbc.M008923200

    Article  CAS  Google Scholar 

  35. Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117(3):285–297

    Article  CAS  Google Scholar 

  36. Xia Y, Babitt JL, Sidis Y, Chung RT, Lin HY (2008) Hemojuvelin regulates hepcidin expression via a selective subset of BMP ligands and receptors independently of neogenin. Blood 111(10):5195–5204. doi:10.1182/blood-2007-09-111567

    Article  CAS  Google Scholar 

  37. Gkouvatsos K, Wagner J, Papanikolaou G, Sebastiani G, Pantopoulos K (2011) Conditional disruption of mouse HFE2 gene: maintenance of systemic iron homeostasis requires hepatic but not skeletal muscle hemojuvelin. Hepatology 54(5):1800–1807. doi:10.1002/hep.24547

    Article  CAS  Google Scholar 

  38. Zhang AS, Gao J, Koeberl DD, Enns CA (2010) The role of hepatocyte hemojuvelin in the regulation of bone morphogenic protein-6 and hepcidin expression in vivo. J Biol Chem 285(22):16416–16423. doi:10.1074/jbc.M110.109488

    Article  CAS  Google Scholar 

  39. Corna G, Campana L, Pignatti E, Castiglioni A, Tagliafico E, Bosurgi L, Campanella A, Brunelli S, Manfredi AA, Apostoli P, Silvestri L, Camaschella C, Rovere-Querini P (2010) Polarization dictates iron handling by inflammatory and alternatively activated macrophages. Haematologica 95(11):1814–1822. doi:10.3324/haematol.2010.023879

    Article  CAS  Google Scholar 

  40. Recalcati S, Locati M, Marini A, Santambrogio P, Zaninotto F, De Pizzol M, Zammataro L, Girelli D, Cairo G (2010) Differential regulation of iron homeostasis during human macrophage polarized activation. Eur J Immunol 40(3):824–835. doi:10.1002/eji.200939889

    Article  CAS  Google Scholar 

  41. Ma LJ, Corsa BA, Zhou J, Yang H, Li H, Tang YW, Babaev VR, Major AS, Linton MF, Fazio S, Hunley TE, Kon V, Fogo AB (2011) Angiotensin type 1 receptor modulates macrophage polarization and renal injury in obesity. Am J Physiol Renal Physiol 300(5):F1203–F1213. doi:10.1152/ajprenal.00468.2010

    Article  CAS  Google Scholar 

  42. Yamamoto S, Yancey PG, Zuo Y, Ma LJ, Kaseda R, Fogo AB, Ichikawa I, Linton MF, Fazio S, Kon V (2011) Macrophage polarization by angiotensin II-type 1 receptor aggravates renal injury-acceleration of atherosclerosis. Arterioscler Thromb Vasc Biol 31(12):2856–2864. doi:10.1161/ATVBAHA.111.237198

    Article  CAS  Google Scholar 

  43. Rouault TA (2006) The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol 2(8):406–414. doi:10.1038/nchembio807

    Article  CAS  Google Scholar 

  44. Galy B, Ferring-Appel D, Becker C, Gretz N, Grone HJ, Schumann K, Hentze MW (2013) Iron regulatory proteins control a mucosal block to intestinal iron absorption. Cell Rep 3(3):844–857. doi:10.1016/j.celrep.2013.02.026

    Article  CAS  Google Scholar 

  45. Vanoaica L, Darshan D, Richman L, Schumann K, Kuhn LC (2010) Intestinal ferritin H is required for an accurate control of iron absorption. Cell Metab 12(3):273–282. doi:10.1016/j.cmet.2010.08.003

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a JSPS KAKENHI Grant (No. 25750044 to S.T.) and in part by the Regional Innovation Cluster Program and the Setsuro Fujii Memorial Osaka Foundation for Promotion of Fundamental Medical Research (to T.T.), and by a JSPS KAKENHI Grant (No. 24591203 to Y.I.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasumasa Ikeda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tajima, S., Ikeda, Y., Enomoto, H. et al. Angiotensin II alters the expression of duodenal iron transporters, hepatic hepcidin, and body iron distribution in mice. Eur J Nutr 54, 709–719 (2015). https://doi.org/10.1007/s00394-014-0749-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-014-0749-1

Keywords

Navigation