Skip to main content

Advertisement

Log in

Is the fructose index more relevant with regards to cardiovascular disease than the glycemic index?

  • ORIGINAL CONTRIBUTION
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

The glycemic index (G.I.) is a means for categorizing carbohydrates based on their ability to raise blood glucose, subsequently this index has been popularized as a way for selecting foods to reduce the risk for obesity, diabetes, and cardiovascular disease. We suggest that the G.I. is better aimed at identifying foods that stimulate insulin secretion rather than foods that stimulate insulin resistance. In this regard, fructose has a low G.I. but may be causally linked with the obesity and cardiovascular disease epidemic. The reported association of high G.I. with cardiovascular disease may be due to the association of sugar intake which contains fructose, but which has a high G.I. due to its glucose content. We propose the use of a fructose index to categorize foods and propose studies to determine the effect of low fructose diets as a means to prevent obesity, diabetes, and cardiovascular disease in the population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (1991) World and U.S. corn sweeteners—1990/1991 world corn sweetener production, consumption, prices. In: Economic Research Service (ed) Situation and Outlook Report: Sugar and Sweetener. US Department of Agriculture

  2. Ackerman Z, Oron-Herman M, Grozovski M, Rosenthal T, Pappo O, Link G, Sela BA (2005) Fructose-induced fatty liver disease: hepatic effects of blood pressure and plasma triglyceride reduction. Hypertension 45:1012–1018

    CAS  Google Scholar 

  3. Agatston A (2003) The south beach diet: the delicious, doctor-designed, foolproof plan for fast and healthy weight loss. St. Martin’s Press, New York

    Google Scholar 

  4. Alper AB Jr, Chen W, Yau L, Srinivasan SR, Berenson GS, Hamm LL (2005) Childhood uric acid predicts adult blood pressure: the Bogalusa Heart Study. Hypertension 45:34–38

    CAS  Google Scholar 

  5. Amano Y, Kawakubo K, Lee JS, Tang AC, Sugiyama M, Mori K (2004) Correlation between dietary glycemic index and cardiovascular disease risk factors among Japanese women. Eur J Clin Nutr 58:1472–1478

    CAS  Google Scholar 

  6. Avena NM, Rada P, Hoebel BG (2007) Evidence for sugar addiction: Behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev Epub ahead of print

  7. Bais R, James HM, Rofe AM, Conyers RA (1985) The purification and properties of human liver ketohexokinase. A role for ketohexokinase and fructose-bisphosphate aldolase in the metabolic production of oxalate from xylitol. Biochem J 230:53–60

    CAS  Google Scholar 

  8. Bantle JP, Raatz SK, Thomas W, Georgopoulos A (2000) Effects of dietary fructose on plasma lipids in healthy subjects. Am J Clin Nutr 72:1128–1134

    CAS  Google Scholar 

  9. Baret G, Peyronnet J, Grassi-Kassisse D, Dalmaz Y, Wiernsperger N, Geloen A (2002) Increased intraabdominal adipose tissue mass in fructose fed rats: correction by metformin. Exp Clin Endocrinol Diabetes 110:298–303

    CAS  Google Scholar 

  10. Beck-Nielsen H, Pedersen O, Lindskov HO (1980) Impaired cellular insulin binding and insulin sensitivity induced by high-fructose feeding in normal subjects. Am J Clin Nutr 33:273–278

    CAS  Google Scholar 

  11. Bell RC, Carlson JC, Storr KC, Herbert K, Sivak J (2000) High-fructose feeding of streptozotocin-diabetic rats is associated with increased cataract formation and increased oxidative stress in the kidney. Br J Nutr 84:575–582

    CAS  Google Scholar 

  12. Bidlingmeyer I, Burnier M, Bidlingmeyer M, Waeber B, Brunner HR (1996) Isolated office hypertension: a prehypertensive state? J Hypertens 14:327–332

    CAS  Google Scholar 

  13. Blakely SR, Hallfrisch J, Reiser S, Prather ES (1981) Long-term effects of moderate fructose feeding on glucose tolerance parameters in rats. J Nutr 111:307–314

    CAS  Google Scholar 

  14. Bode JC, Zelder O, Rumpelt HJ, Wittkamp U (1973) Depletion of liver adenosine phosphates and metabolic effects of intravenous infusion of fructose or sorbitol in man and in the rat. Eur J Clin Invest 3:436–441

    CAS  Google Scholar 

  15. Brands MW, Garrity CA, Holman MG, Keen HL, Alonso-Galicia M, Hall JE (1994) High-fructose diet does not raise 24-h mean arterial pressure in rats. Am J Hypertens 7:104–109

    CAS  Google Scholar 

  16. Bray GA, Nielsen SJ, Popkin BM (2004) Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr 79:537–543

    CAS  Google Scholar 

  17. Burant CF, Saxena M (1994) Rapid reversible substrate regulation of fructose transporter expression in rat small intestine and kidney. Am J Physiol 267:G71–G79

    CAS  Google Scholar 

  18. Butler R, Morris AD, Belch JJ, Hill A, Struthers AD (2000) Allopurinol normalizes endothelial dysfunction in type 2 diabetics with mild hypertension. Hypertension 35:746–751

    CAS  Google Scholar 

  19. Cardillo C, Kilcoyne CM, Cannon RO 3rd, Quyyumi AA, Panza JA (1997) Xanthine oxidase inhibition with oxypurinol improves endothelial vasodilator function in hypercholesterolemic but not in hypertensive patients. Hypertension 30:57–63

    CAS  Google Scholar 

  20. Cheung KJ, Tzameli I, Pissios P, Rovira I, Gavrilova O, Ohtsubo T, Chen Z, Finkel T, Flier JS, Friedman JM (2007) Xanthine oxidoreductase is a regulator of adipogenesis and PPAR[gamma] activity. Cell Metabolism 5:115–128

    CAS  Google Scholar 

  21. Clausen T, Slott M, Solvoll K, Drevon CA, Vollset SE, Henriksen T (2001) High intake of energy, sucrose, and polyunsaturated fatty acids is associated with increased risk of preeclampsia. Am J Obstet Gynecol 185:451–458

    CAS  Google Scholar 

  22. Cunha TS, Farah V, Paulini J, Pazzine M, Elased KM, Marcondes FK, Claudia Irigoyen M, De Angelis K, Mirkin LD, Morris M (2007) Relationship between renal and cardiovascular changes in a murine model of glucose intolerance. Regul Pept 139:1–4

    CAS  Google Scholar 

  23. D’Angelo G, Elmarakby AA, Pollock DM, Stepp DW (2005) Fructose feeding increases insulin resistance but not blood pressure in Sprague-Dawley rats. Hypertension 46:806–811

    CAS  Google Scholar 

  24. Dennison BA, Rockwell HL, Baker SL (1997) Excess fruit juice consumption by preschool-aged children is associated with short stature and obesity. Pediatrics 99:15–22

    CAS  Google Scholar 

  25. Doehner W, Anker SD (2005) Xanthine oxidase inhibition for chronic heart failure: is allopurinol the next therapeutic advance in heart failure? Heart 91:707–709

    CAS  Google Scholar 

  26. Doehner W, Schoene N, Rauchhaus M, Leyva-Leon F, Pavitt DV, Reaveley DA, Schuler G, Coats AJ, Anker SD, Hambrecht R (2002) Effects of xanthine oxidase inhibition with allopurinol on endothelial function and peripheral blood flow in hyperuricemic patients with chronic heart failure: results from 2 placebo-controlled studies. Circulation 105:2619–2624

    CAS  Google Scholar 

  27. Dresser C (1979) Food consumption profiles of white and black persons aged 1–74 years: United States 1971–1974. Data from the National Health survey, DHEW Publication No (PHS) 79–1658. National Center for Health Statistics, Hyattsville, MD

    Google Scholar 

  28. Drewnowski A, Bellisle F (2007) Liquid calories, sugar, and body weight. Am J Clin Nutr 85:651–661

    CAS  Google Scholar 

  29. Duplain H, Burcelin R, Sartori C, Cook S, Egli M, Lepori M, Vollenweider P, Pedrazzini T, Nicod P, Thorens B, Scherrer U (2001) Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation 104:342–345

    CAS  Google Scholar 

  30. Dwyer JT, Evans M, Stone EJ, Feldman HA, Lytle L, Hoelscher D, Johnson C, Zive M, Yang M (2001) Adolescents’ eating patterns influence their nutrient intakes. J Am Diet Assoc 101:798–802

    CAS  Google Scholar 

  31. Dyer AR, Liu K, Walsh M, Kiefe C, Jacobs DR Jr, Bild DE (1999) Ten-year incidence of elevated blood pressure and its predictors: the CARDIA study. Coronary artery risk development in (young) adults. J Hum Hypertens 13:13–21

    CAS  Google Scholar 

  32. Ebbeling CB, Feldman HA, Osganian SK, Chomitz VR, Ellenbogen SJ, Ludwig DS (2006) Effects of decreasing sugar-sweetened beverage consumption on body weight in adolescents: a randomized, controlled pilot study. Pediatrics 117:673–680

    Google Scholar 

  33. El Solh AA, Saliba R, Bosinski T, Grant BJ, Berbary E, Miller N (2006) Allopurinol improves endothelial function in sleep apnoea: a randomised controlled study. Eur Respir J 27:997–1002

    CAS  Google Scholar 

  34. Elliott SS, Keim NL, Stern JS, Teff K, Havel PJ (2002) Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr 76:911–922

    CAS  Google Scholar 

  35. Faeh D, Minehira K, Schwarz JM, Periasamy R, Park S, Tappy L (2005) Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy men. Diabetes 54:1907–1913

    CAS  Google Scholar 

  36. Farah V, Elased KM, Chen Y, Key MP, Cunha TS, Irigoyen MC, Morris M (2006) Nocturnal hypertension in mice consuming a high fructose diet. Auton Neurosci 130:41–50

    CAS  Google Scholar 

  37. Farquharson CA, Butler R, Hill A, Belch JJ, Struthers AD (2002) Allopurinol improves endothelial dysfunction in chronic heart failure. Circulation 106:221–226

    CAS  Google Scholar 

  38. Feig DI, Nakagawa T, Karumanchi SA, Oliver WJ, Kang DH, Finch J, Johnson RJ (2004) Hypothesis: uric acid, nephron number, and the pathogenesis of essential hypertension 66:281–287

  39. Fiaschi E, Baggio B, Favaro S, Antonello A, Camerin E, Todesco S, Borsatti A (1977) Fructose-induced hyperuricemia in essential hypertension. Metabolism 26:1219–1223

    CAS  Google Scholar 

  40. Forman JP, Choi H, Curhan GC (2007) Plasma uric acid level and risk for incident hypertension among men. J Am Soc Nephrol 18:287–292

    CAS  Google Scholar 

  41. Foster-Powell K, Holt SH, Brand-Miller JC (2002) International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr 76:5–56

    CAS  Google Scholar 

  42. Fox IH, Kelley WN (1972) Studies on the mechanism of fructose-induced hyperuricemia in man. Metabolism 21:713–721

    CAS  Google Scholar 

  43. Fukuda H, Dyck J, Stout J (2002) Sweetener Policies in Japan. In: Economic Research Service (ed) Situation and outlook report: sugar and sweetener. US Department of Agriculture

  44. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114:1752–1761

    CAS  Google Scholar 

  45. Gaby AR (2005) Adverse effects of dietary fructose. Altern Med Rev 10:294–306

    Google Scholar 

  46. Galbusera C, Orth P, Fedida D, Spector T (2006) Superoxide radical production by allopurinol and xanthine oxidase. Biochem Pharmacol 71:1747–1752

    CAS  Google Scholar 

  47. Gao X, Qi L, Qiao N, Choi HK, Curhan G, Tucker KL, Ascherio A (2007) Intake of added sugar and sugar-sweetened drink and serum uric acid concentration in US men and women. Hypertension 50:306–312

    CAS  Google Scholar 

  48. George J, Carr E, Davies J, Belch JJ, Struthers A (2006) High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid. Circulation 114:2508–2516

    CAS  Google Scholar 

  49. Gross LS, Li L, Ford ES, Liu S (2004) Increased consumption of refined carbohydrates and the epidemic of type 2 diabetes in the United States: an ecologic assessment. Am J Clin Nutr 79:774–779

    CAS  Google Scholar 

  50. Guthikonda S, Sinkey C, Barenz T, Haynes WG (2003) Xanthine oxidase inhibition reverses endothelial dysfunction in heavy smokers. Circulation 107:416–421

    CAS  Google Scholar 

  51. Haley S, Reed J, Biing-Hwan L, Cook A (2005) Sweetener consumption in the United States: distribution by demographic and product characteristics. In: Economic Research Service (ed) Situation and outlook report: sugar and sweetener. US Department of Agriculture

  52. Hallfrisch J, Ellwood KC, Michaelis OEt, Reiser S, O’Dorisio TM, Prather ES (1983) Effects of dietary fructose on plasma glucose and hormone responses in normal and hyperinsulinemic men. J Nutr 113:1819–1826

    CAS  Google Scholar 

  53. Hallfrisch J, Reiser S, Prather ES (1983) Blood lipid distribution of hyperinsulinemic men consuming three levels of fructose. Am J Clin Nutr 37:740–748

    CAS  Google Scholar 

  54. Havel PJ (2005) Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr Rev 63:133–157

    Google Scholar 

  55. Herbert KL, Sivak JG, Bell RC (1999) Effect of diabetes and fructose/non-fructose diet on the optical quality (cataracts) of the rat lens. Curr Eye Res 19:305–312

    CAS  Google Scholar 

  56. Howard BV, Wylie-Rosett J (2002) Sugar and cardiovascular disease: a statement for healthcare professionals from the committee on nutrition of the council on nutrition, physical activity, and metabolism of the American heart association. Circulation 106:523–527

    Google Scholar 

  57. Hsieh PS, Huang WC (2001) Neonatal chemical sympathectomy attenuates fructose-induced hypertriglyceridemia and hypertension in rats. Chin J Physiol 44:25–31

    CAS  Google Scholar 

  58. Huang BW, Chiang MT, Yao HT, Chiang W (2004) The effect of high-fat and high-fructose diets on glucose tolerance and plasma lipid and leptin levels in rats. Diabetes Obes Metab 6:120–126

    CAS  Google Scholar 

  59. Hung CT (1989) Effects of high-fructose (90%) corn syrup on plasma glucose, insulin, and C-peptide in non-insulin-dependent diabetes mellitus and normal subjects. Taiwan Yi Xue Hui Za Zhi 88:883–885

    CAS  Google Scholar 

  60. Hunt SC, Stephenson SH, Hopkins PN, Williams RR (1991) Predictors of an increased risk of future hypertension in Utah. A screening analysis Hypertension 17:969–976

    CAS  Google Scholar 

  61. Imazu M, Yamamoto H, Toyofuku M, Sumii K, Okubo M, Egusa G, Yamakido M, Kohno N (2001) Hyperinsulinemia for the development of hypertension: data from the Hawaii-Los Angeles-Hiroshima Study. Hypertens Res 24:531–536

    CAS  Google Scholar 

  62. Israel KD, Michaelis OEt, Reiser S, Keeney M (1983) Serum uric acid, inorganic phosphorus, and glutamic-oxalacetic transaminase and blood pressure in carbohydrate-sensitive adults consuming three different levels of sucrose. Ann Nutr Metab 27:425–435

    Article  CAS  Google Scholar 

  63. Jenkins DJ, Wolever TM, Taylor RH, Barker H, Fielden H, Baldwin JM, Bowling AC, Newman HC, Jenkins AL, Goff DV (1981) Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr 34:362–366

    CAS  Google Scholar 

  64. Jequier E, Tappy L (1999) Regulation of body weight in humans. Physiol Rev 79:451–480

    CAS  Google Scholar 

  65. Johnson RJ, Gordon KL, Suga S, Duijvestijn AM, Griffin K, Bidani A (1999) Renal injury and salt-sensitive hypertension after exposure to catecholamines. Hypertension 34:151–159

    CAS  Google Scholar 

  66. Johnson RJ, Herrera-Acosta J, Schreiner GF, Rodriguez-Iturbe B (2002) Subtle acquired renal injury as a mechanism of salt-sensitive hypertension. N Engl J Med 346:913–923

    CAS  Google Scholar 

  67. Johnson RJ, Kang DH, Feig D, Kivlighn S, Kanellis J, Watanabe S, Tuttle KR, Rodriguez-Iturbe B, Herrera-Acosta J, Mazzali M (2003) Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension 41:1183–1190

    CAS  Google Scholar 

  68. Jossa F, Farinaro E, Panico S, Krogh V, Celentano E, Galasso R, Mancini M, Trevisan M (1994) Serum uric acid and hypertension: the Olivetti heart study. J Hum Hypertens 8:677–681

    CAS  Google Scholar 

  69. Jurgens H, Haass W, Castaneda TR, Schurmann A, Koebnick C, Dombrowski F, Otto B, Nawrocki AR, Scherer PE, Spranger J, Ristow M, Joost HG, Havel PJ, Tschop MH (2005) Consuming fructose-sweetened beverages increases body adiposity in mice. Obes Res 13:1146–1156

    Google Scholar 

  70. Kang DH, Park SK, Lee IK, Johnson RJ (2005) Uric acid-induced C-reactive protein expression: implication on cell proliferation and nitric oxide production of human vascular cells. J Am Soc Nephrol 16:3553–3562

    CAS  Google Scholar 

  71. Katakam PV, Hoenig M, Ujhelyi MR, Miller AW (2000) Cytochrome P450 activity and endothelial dysfunction in insulin resistance. J Vasc Res 37:426–434

    CAS  Google Scholar 

  72. Katakam PV, Ujhelyi MR, Hoenig ME, Miller AW (1998) Endothelial dysfunction precedes hypertension in diet-induced insulin resistance. Am J Physiol 275:R788–R792

    CAS  Google Scholar 

  73. Kerr GR, Amante P, Decker M, Callen PW (1983) Supermarket sales of high-sugar products in predominantly Black, Hispanic, and white census tracts of Houston, Texas. Am J Clin Nutr 37:622–631

    CAS  Google Scholar 

  74. Khosla UM, Zharikov S, Finch JL, Nakagawa T, Roncal C, Mu W, Krotova K, Block ER, Prabhakar S, Johnson RJ (2005) Hyperuricemia induces endothelial dysfunction. Kidney Int 67:1739–1742

    Google Scholar 

  75. Korieh A, Crouzoulon G (1991) Dietary regulation of fructose metabolism in the intestine and in the liver of the rat. Duration of the effects of a high fructose diet after the return to the standard diet. Arch Int Physiol Biochim Biophys 99:455–460

    CAS  Google Scholar 

  76. Kranz S, Smiciklas-Wright H, Siega-Riz AM, Mitchell D (2005) Adverse effect of high added sugar consumption on dietary intake in American preschoolers. J Pediatr 146:105–111

    CAS  Google Scholar 

  77. Krishnan E, Kwoh CK, Schumacher HR, Kuller L (2007) Hyperuricemia and incidence of hypertension among men without metabolic syndrome. Hypertension 49:298–303

    CAS  Google Scholar 

  78. Kurtz TW, Griffin KA, Bidani AK, Davisson RL, Hall JE (2005) Recommendations for blood pressure measurement in animals: summary of an AHA scientific statement from the Council on High Blood Pressure Research, Professional and Public Education Subcommittee. Arterioscler Thromb Vasc Biol 25:478–479

    CAS  Google Scholar 

  79. Kuzkaya N, Weissmann N, Harrison DG, Dikalov S (2005) Interactions of peroxynitrite with uric acid in the presence of ascorbate and thiols: implications for uncoupling endothelial nitric oxide synthase. Biochem Pharmacol 70:343–354

    CAS  Google Scholar 

  80. Landmesser U, Spiekermann S, Dikalov S, Tatge H, Wilke R, Kohler C, Harrison DG, Hornig B, Drexler H (2002) Vascular oxidative stress and endothelial dysfunction in patients with chronic heart failure: role of xanthine-oxidase and extracellular superoxide dismutase. Circulation 106:3073–3078

    CAS  Google Scholar 

  81. Le KA, Faeh D, Stettler R, Ith M, Kreis R, Vermathen P, Boesch C, Ravussin E, Tappy L (2006) A 4-wk high-fructose diet alters lipid metabolism without affecting insulin sensitivity or ectopic lipids in healthy humans. Am J Clin Nutr 84:1374–1379

    CAS  Google Scholar 

  82. Le KA, Tappy L (2006) Metabolic effects of fructose. Curr Opin Clin Nutr Metab Care 9:469–475

    CAS  Google Scholar 

  83. Liese AD, Schulz M, Fang F, Wolever TM, D’Agostino RB Jr, Sparks KC, Mayer-Davis EJ (2005) Dietary glycemic index and glycemic load, carbohydrate and fiber intake, and measures of insulin sensitivity, secretion, and adiposity in the Insulin Resistance Atherosclerosis Study. Diabetes Care 28:2832–2838

    CAS  Google Scholar 

  84. Lingelbach LB, McDonald RB (2000) Description of the long-term lipogenic effects of dietary carbohydrates in male Fischer 344 rats. J Nutr 130:3077–3084

    CAS  Google Scholar 

  85. Liu S, Manson JE (2001) Dietary carbohydrates, physical inactivity, obesity, and the ‘metabolic syndrome’ as predictors of coronary heart disease. Curr Opin Lipidol 12:395–404

    CAS  Google Scholar 

  86. Liu S, Manson JE, Stampfer MJ, Holmes MD, Hu FB, Hankinson SE, Willett WC (2001) Dietary glycemic load assessed by food-frequency questionnaire in relation to plasma high-density-lipoprotein cholesterol and fasting plasma triacylglycerols in postmenopausal women. Am J Clin Nutr 73:560–566

    CAS  Google Scholar 

  87. Liu S, Willett WC, Stampfer MJ, Hu FB, Franz M, Sampson L, Hennekens CH, Manson JE (2000) A prospective study of dietary glycemic load, carbohydrate intake, and risk of coronary heart disease in US women. Am J Clin Nutr 71:1455–1461

    CAS  Google Scholar 

  88. Ludwig DS, Peterson KE, Gortmaker SL (2001) Relation between consumption of sugar-sweetened drinks and childhood obesity: a prospective, observational analysis. Lancet 357:505–508

    CAS  Google Scholar 

  89. Macdonald I (1966) Influence of fructose and glucose on serum lipid levels in men and pre- and postmenopausal women. Am J Clin Nutr 18:369–372

    CAS  Google Scholar 

  90. Maenpaa PH, Raivio KO, Kekomaki MP (1968) Liver adenine nucleotides: fructose-induced depletion and its effect on protein synthesis. Science 161:1253–1254

    CAS  Google Scholar 

  91. Mancia G, Facchetti R, Bombelli M, Grassi G, Sega R (2006) Long-term risk of mortality associated with selective and combined elevation in office, home, and ambulatory blood pressure. Hypertension 47:846–853

    CAS  Google Scholar 

  92. Manitius J, Biedunkiewicz B, Kustosz J, Rutkowski B (1996) The relationship between insulin, glucose and serum uric acid and their contribution to the progression of renal damage in patients with primary glomerulonephritis. J Int Med Res 24:449–453

    CAS  Google Scholar 

  93. Masuo K, Kawaguchi H, Mikami H, Ogihara T, Tuck ML (2003) Serum uric acid and plasma norepinephrine concentrations predict subsequent weight gain and blood pressure elevation. Hypertension 42:474–480

    CAS  Google Scholar 

  94. Mazzali M, Hughes J, Kim YG, Jefferson JA, Kang DH, Gordon KL, Lan HY, Kivlighn S, Johnson RJ (2001) Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension 38:1101–1106

    CAS  Google Scholar 

  95. Mellen PB, Bleyer AJ, Erlinger TP, Evans GW, Nieto FJ, Wagenknecht LE, Wofford MR, Herrington DM (2006) Serum Uric Acid Predicts Incident Hypertension in a Biethnic Cohort. The Atherosclerosis Risk in Communities Study. Hypertension

  96. Mercuro G, Vitale C, Cerquetani E, Zoncu S, Deidda M, Fini M, Rosano GM (2004) Effect of hyperuricemia upon endothelial function in patients at increased cardiovascular risk. Am J Cardiol 94:932–935

    CAS  Google Scholar 

  97. Miatello R, Cruzado M, Risler N (2004) Mechanisms of cardiovascular changes in an experimental model of syndrome X and pharmacological intervention on the renin-angiotensin-system. Curr Vasc Pharmacol 2:371–377

    CAS  Google Scholar 

  98. Miatello R, Risler N, Gonzalez S, Castro C, Ruttler M, Cruzado M (2002) Effects of enalapril on the vascular wall in an experimental model of syndrome X. Am J Hypertens 15:872–878

    CAS  Google Scholar 

  99. Miller JC (1994) Importance of glycemic index in diabetes. Am J Clin Nutr 59:747S–752S

    CAS  Google Scholar 

  100. Moore MC, Cherrington AD, Mann SL, Davis SN (2000) Acute fructose administration decreases the glycemic response to an oral glucose tolerance test in normal adults. J Clin Endocrinol Metab 85:4515–4519

    CAS  Google Scholar 

  101. Morris RC Jr, Nigon K, Reed EB (1978) Evidence that the severity of depletion of inorganic phosphate determines the severity of the disturbance of adenine nucleotide metabolism in the liver and renal cortex of the fructose-loaded rat. J Clin Invest 61:209–220

    Article  CAS  Google Scholar 

  102. Nagahama K, Inoue T, Iseki K, Touma T, Kinjo K, Ohya Y, Takishita S (2004) Hyperuricemia as a predictor of hypertension in a screened cohort in Okinawa, Japan. Hypertens Res 27:835–841

    Google Scholar 

  103. Nair S, V PC, Arnold C, Diehl AM (2003) Hepatic ATP reserve and efficiency of replenishing: comparison between obese and nonobese normal individuals. Am J Gastroenterol 98:466–470

    Google Scholar 

  104. Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova O, Ouyang X, Feig DI, Block ER, Herrera-Acosta J, Patel JM, Johnson RJ (2006) A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol Renal Physiol 290:F625–F631

    CAS  Google Scholar 

  105. Nakagawa T, Tuttle KR, Short RA, Johnson RJ (2006) Fructose-induced hyperuricemia as a casual mechanism for the epidemic of the metabolic syndrome. Nature Clinical Practice Nephrology 1:80–86

    Google Scholar 

  106. Nakanishi N, Okamoto M, Yoshida H, Matsuo Y, Suzuki K, Tatara K (2003) Serum uric acid and risk for development of hypertension and impaired fasting glucose or Type II diabetes in Japanese male office workers. Eur J Epidemiol 18:523–530

    CAS  Google Scholar 

  107. Nielsen SJ, Popkin BM (2004) Changes in beverage intake between 1977 and 2001. Am J Prev Med 27:205–210

    Google Scholar 

  108. Nishimoto Y, Tomida T, Matsui H, Ito T, Okumura K (2002) Decrease in renal medullary endothelial nitric oxide synthase of fructose-fed, salt-sensitive hypertensive rats. Hypertension 40:190–194

    CAS  Google Scholar 

  109. Oh K, Hu FB, Cho E, Rexrode KM, Stampfer MJ, Manson JE, Liu S, Willett WC (2005) Carbohydrate intake, glycemic index, glycemic load, and dietary fiber in relation to risk of stroke in women. Am. J. Epidemiol. 161:161–169

    Google Scholar 

  110. Osei K, Bossetti B (1989) Dietary fructose as a natural sweetener in poorly controlled type 2 diabetes: a 12-month crossover study of effects on glucose, lipoprotein and apolipoprotein metabolism. Diabet Med 6:506–511

    Article  CAS  Google Scholar 

  111. Pelaez LI, Manriquez MC, Nath KA, Romero JC, Juncos LA (2003) Low-dose angiotensin II enhances pressor responses without causing sustained hypertension. Hypertension 42:798–801

    CAS  Google Scholar 

  112. Perheentupa J, Raivio K (1967) Fructose-induced hyperuricaemia. Lancet 2:528–531

    CAS  Google Scholar 

  113. Perlstein TS, Gumieniak O, Williams GH, Sparrow D, Vokonas PS, Gaziano M, Weiss ST, Litonjua AA (2006) Uric acid and the development of hypertension: the normative aging study. Hypertension 48:1031–1036

    CAS  Google Scholar 

  114. Pi-Sunyer FX (2002) Glycemic index and disease. Am J Clin Nutr 76:290S–298S

    CAS  Google Scholar 

  115. Pinkney JH, Stehouwer CD, Coppack SW, Yudkin JS (1997) Endothelial dysfunction: cause of the insulin resistance syndrome. Diabetes 46(Suppl 2):S9–S13

    CAS  Google Scholar 

  116. Quiroz Y, Pons H, Gordon KL, Rincon J, Chavez M, Parra G, Herrera-Acosta J, Gomez-Garre D, Largo R, Egido J, Johnson RJ, Rodriguez-Iturbe B (2001) Mycophenolate mofetil prevents salt-sensitive hypertension resulting from nitric oxide synthesis inhibition. Am J Physiol Renal Physiol 281:F38–F47

    CAS  Google Scholar 

  117. Raatz SK, Torkelson CJ, Redmon JB, Reck KP, Kwong CA, Swanson JE, Liu C, Thomas W, Bantle JP (2005) Reduced glycemic index and glycemic load diets do not increase the effects of energy restriction on weight loss and insulin sensitivity in obese men and women. J Nutr 135:2387–2391

    CAS  Google Scholar 

  118. Raben A, Macdonald I, Astrup A (1997) Replacement of dietary fat by sucrose or starch: effects on 14 d ad libitum energy intake, energy expenditure and body weight in formerly obese and never-obese subjects. Int J Obes Relat Metab Disord 21:846–859

    CAS  Google Scholar 

  119. Raben A, Vasilaras TH, Moller AC, Astrup A (2002) Sucrose compared with artificial sweeteners: different effects on ad libitum food intake and body weight after 10 wk of supplementation in overweight subjects. Am J Clin Nutr 76:721–729

    CAS  Google Scholar 

  120. Rajasekar P, Anuradha CV (2007) Fructose-induced hepatic gluconeogenesis: effect of L-carnitine. Life Sci 80:1176–1183

    CAS  Google Scholar 

  121. Reiser S, Powell AS, Scholfield DJ, Panda P, Ellwood KC, Canary JJ (1989) Blood lipids, lipoproteins, apoproteins, and uric acid in men fed diets containing fructose or high-amylose cornstarch. Am J Clin Nutr 49:832–839

    CAS  Google Scholar 

  122. Reyes AJ, Leary WP (2002) The ALLHAT and the cardioprotection conferred by diuretics in hypertensive patients: a connection with uric acid? Cardiovasc Drugs Ther 16:485–487

    Google Scholar 

  123. Rizkalla SW, Bellisle F, Slama G (2002) Health benefits of low glycaemic index foods, such as pulses, in diabetic patients and healthy individuals. Br J Nutr 88(Suppl 3):S255–S262

    CAS  Google Scholar 

  124. Roberts SB, Heyman MB (2000) Dietary composition and obesity: do we need to look beyond dietary fat? J Nutr 130:267S

    CAS  Google Scholar 

  125. Rodriguez-Iturbe B, Pons H, Quiroz Y, Gordon K, Rincon J, Chavez M, Parra G, Herrera-Acosta J, Gomez-Garre D, Largo R, Egido J, Johnson RJ (2001) Mycophenolate mofetil prevents salt-sensitive hypertension resulting from angiotensin II exposure. Kidney Int 59:2222–2232

    CAS  Google Scholar 

  126. Rodriguez-Iturbe B, Quiroz Y, Nava M, Bonet L, Chavez M, Herrera-Acosta J, Johnson RJ, Pons HA (2002) Reduction of renal immune cell infiltration results in blood pressure control in genetically hypertensive rats. Am J Physiol Renal Physiol 282:F191–F201

    Google Scholar 

  127. Roy D, Perreault M, Marette A (1998) Insulin stimulation of glucose uptake in skeletal muscles and adipose tissues in vivo is NO dependent. Am J Physiol 274:E692–E699

    CAS  Google Scholar 

  128. Rutkowski B, Tylicki L, Manitius J, Lysiak-Szydlowska W (1999) Hypertensive nephropathy - an increasing clinical problem. Miner Electrolyte Metab 25:65–68

    CAS  Google Scholar 

  129. Sanchez-Lozada LG L-MR, Soto V, Tapia E, Avila-Casado C, Bautista R, Nakawaga T, Franco M, Johnson RJ (2007) Low fructose caloric intake concomitant to hyperuricemia induces hyperinsulinemia and renal structural damage in rats. J Am Soc Nephrol (in press) (abstract)

  130. Sanchez-Lozada LG, Tapia E, Jimenez A, Bautista P, Cristobal M, Nepomuceno T, Soto V, Avila-Casado C, Nakagawa T, Johnson RJ, Herrera-Acosta J, Franco M (2007) Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am J Physiol Renal Physiol 292:F423–F429

    CAS  Google Scholar 

  131. Santos CX, Anjos EI, Augusto O (1999) Uric acid oxidation by peroxynitrite: multiple reactions, free radical formation, and amplification of lipid oxidation. Arch Biochem Biophys 372:285–294

    CAS  Google Scholar 

  132. Sato Y, Ito T, Udaka N, Kanisawa M, Noguchi Y, Cushman SW, Satoh S (1996) Immunohistochemical localization of facilitated-diffusion glucose transporters in rat pancreatic islets. Tissue Cell 28:637–643

    CAS  Google Scholar 

  133. Sautin YY, Nakagawa T, Zharikov S, Johnson RJ (2007) Adverse effects of the classical antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am J Physiol Cell Physiol

  134. Scarpace PJ, Matheny M, Tumer N, Cheng KY, Zhang Y (2005) Leptin resistance exacerbates diet-induced obesity and is associated with diminished maximal leptin signalling capacity in rats. Diabetologia 48:1075–1083

    CAS  Google Scholar 

  135. Schulze MB, Manson JE, Ludwig DS, Colditz GA, Stampfer MJ, Willett WC, Hu FB (2004) Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. Jama 292:927–934

    CAS  Google Scholar 

  136. Selby JV, Friedman GD, Quesenberry CP Jr (1990) Precursors of essential hypertension: pulmonary function, heart rate, uric acid, serum cholesterol, and other serum chemistries. Am J Epidemiol 131:1017–1027

    CAS  Google Scholar 

  137. Shafrir E, Orevi M (1984) Response of hepatic fructokinase to long-term sucrose diets and diabetes in spiny mice, albino mice and rats. Comp Biochem Physiol B 78:493–498

    CAS  Google Scholar 

  138. Shankar A, Klein R, Klein BE, Nieto FJ (2006) The association between serum uric acid level and long-term incidence of hypertension: population-based cohort study. J Hum Hypertens 20(12):937–945

    CAS  Google Scholar 

  139. Shiota M, Galassetti P, Monohan M, Neal DW, Cherrington AD (1998) Small amounts of fructose markedly augment net hepatic glucose uptake in the conscious dog. Diabetes 47:867–873

    CAS  Google Scholar 

  140. Shiota M, Moore MC, Galassetti P, Monohan M, Neal DW, Shulman GI, Cherrington AD (2002) Inclusion of low amounts of fructose with an intraduodenal glucose load markedly reduces postprandial hyperglycemia and hyperinsulinemia in the conscious dog. Diabetes 51:469–478

    CAS  Google Scholar 

  141. Siu YP, Leung KT, Tong MK, Kwan TH (2006) Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. Am J Kidney Dis 47:51–59

    CAS  Google Scholar 

  142. Song D, Hutchings S, Pang CC (2005) Chronic N-acetylcysteine prevents fructose-induced insulin resistance and hypertension in rats. Eur J Pharmacol 508:205–210

    CAS  Google Scholar 

  143. Stavric B, Johnson WJ, Clayman S, Gadd RE, Chartrand A (1976) Effect of fructose administration on serum urate levels in the uricase inhibited rat. Experientia 32:373–374

    CAS  Google Scholar 

  144. Stewart T, Jung FF, Manning J, Vehaskari VM (2005) Kidney immune cell infiltration and oxidative stress contribute to prenatally programmed hypertension. Kidney Int 68:2180–2188

    CAS  Google Scholar 

  145. Stirpe F, Della Corte E, Bonetti E, Abbondanza A, Abbati A, De Stefano F (1970) Fructose-induced hyperuricaemia. Lancet 2:1310–1311

    CAS  Google Scholar 

  146. Sundstrom J, Sullivan L, D’Agostino RB, Levy D, Kannel WB, Vasan RS (2005) Relations of serum uric acid to longitudinal blood pressure tracking and hypertension incidence. Hypertension 45:28–33

    Google Scholar 

  147. Swanson JE, Laine DC, Thomas W, Bantle JP (1992) Metabolic effects of dietary fructose in healthy subjects. Am J Clin Nutr 55:851–856

    CAS  Google Scholar 

  148. Takagi Y, Kashiwagi A, Tanaka Y, Asahina T, Kikkawa R, Shigeta Y (1995) Significance of fructose-induced protein oxidation and formation of advanced glycation end product. J. Diabetes Complications 9:87–91

    CAS  Google Scholar 

  149. Taniguchi Y, Hayashi T, Tsumura K, Endo G, Fujii S, Okada K (2001) Serum uric acid and the risk for hypertension and Type 2 diabetes in Japanese men: the Osaka Health Survey. J Hypertens 19:1209–1215

    CAS  Google Scholar 

  150. Teff KL, Elliott SS, Tschop M, Kieffer TJ, Rader D, Heiman M, Townsend RR, Keim NL, D’Alessio D, Havel PJ (2004) Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. J Clin Endocrinol Metab 89:2963–2972

    CAS  Google Scholar 

  151. The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–986

    Google Scholar 

  152. Thorburn AW, Storlien LH, Jenkins AB, Khouri S, Kraegen EW (1989) Fructose-induced in vivo insulin resistance and elevated plasma triglyceride levels in rats. Am J Clin Nutr 49:1155–1163

    CAS  Google Scholar 

  153. Tokita Y, Hirayama Y, Sekikawa A, Kotake H, Toyota T, Miyazawa T, Sawai T, Oikawa S (2005) Fructose ingestion enhances atherosclerosis and deposition of advanced glycated end-products in cholesterol-fed rabbits. J Atheroscler Thromb 12:260–267

    CAS  Google Scholar 

  154. United Kingdom Prospective Diabetes Study (UKPDS) (1995) 13: relative efficacy of randomly allocated diet, sulphonylurea, insulin, or metformin in patients with newly diagnosed non-insulin dependent diabetes followed for 3 years. BMJ 310:83–88

    Google Scholar 

  155. Vasdev S, Gill V, Parai S, Longerich L, Gadag V (2002) Dietary vitamin E and C supplementation prevents fructose induced hypertension in rats. Mol Cell Biochem 241:107–114

    CAS  Google Scholar 

  156. Verma S, Bhanot S, McNeill JH (1999) Sympathectomy prevents fructose-induced hyperinsulinemia and hypertension. Eur J Pharmacol 373:R1–R4

    CAS  Google Scholar 

  157. Virdis A, Ghiadoni L, Sudano I, Buralli S, Salvetti G, Taddei S, Salvetti A (2002) Endothelial function in hypertension: role of gender. J Hypertens Suppl 20:S11–S16

    CAS  Google Scholar 

  158. Virkamaki A, Korsheninnikova E, Seppala-Lindroos A, Vehkavaara S, Goto T, Halavaara J, Hakkinen AM, Yki-Jarvinen H (2001) Intramyocellular lipid is associated with resistance to in vivo insulin actions on glucose uptake, antilipolysis, and early insulin signaling pathways in human skeletal muscle. Diabetes 50:2337–2343

    CAS  Google Scholar 

  159. Waring WS, Convery A, Mishra V, Shenkin A, Webb DJ, Maxwell SR (2003) Uric acid reduces exercise-induced oxidative stress in healthy adults. Clin Sci (Lond) 105:425–430

    Article  CAS  Google Scholar 

  160. Waring WS, McKnight JA, Webb DJ, Maxwell SR (2006) Uric acid restores endothelial function in patients with type 1 diabetes and regular smokers. Diabetes 55:3127–3132

    CAS  Google Scholar 

  161. Watanabe S, Kang DH, Feng L, Nakagawa T, Kanellis J, Lan H, Mazzali M, Johnson RJ (2002) Uric acid, hominoid evolution, and the pathogenesis of salt-sensitivity. Hypertension 40:355–360

    CAS  Google Scholar 

  162. Weiser MM, Quill H, Isselbacher KJ (1971) Effects of diet on rat intestinal soluble hexokinase and fructokinase activities. Am J Physiol 221:844–849

    CAS  Google Scholar 

  163. Wexler BC (1982) Allantoxanamide-induced myocardial necrosis in Sprague-Dawley vs spontaneously hypertensive rats. Proc Soc Exp Biol Med 170:476–485

    CAS  Google Scholar 

  164. Wexler BC, Greenberg BP (1977) Effect of increased serum urate levels on virgin rats with no arteriosclerosis versus breeder rats with preexistent arteriosclerosis. Metabolism 26:1309–1320

    CAS  Google Scholar 

  165. Willett W, Manson J, Liu S (2002) Glycemic index, glycemic load, and risk of type 2 diabetes. Am J Clin Nutr 76:274S–280S

    CAS  Google Scholar 

  166. Winkelmayer WC, Stampfer MJ, Willett WC, Curhan GC (2005) Habitual caffeine intake and the risk of hypertension in women. Jama 294:2330–2335

    CAS  Google Scholar 

  167. Yadav H, Jain S, Sinha PR (2007) Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition 23:62–68

    Google Scholar 

  168. Yudkin J (1967) Evolutionary and historical changes in dietary carbohydrates. Am J Clin Nutr 20:108–115

    CAS  Google Scholar 

  169. Zhao W, Devamanoharan PS, Varma SD (1998) Fructose induced deactivation of glucose-6-phosphate dehydrogenase activity and its prevention by pyruvate: implications in cataract prevention. Free Radic Res 29:315–320

    CAS  Google Scholar 

  170. Zhao W, Devamanoharan PS, Varma SD (2000) Fructose-mediated damage to lens [alpha]-crystallin: prevention by pyruvate. Biochim Biophys Acta (BBA)-Mol Basis Dis 1500:161–168

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH grants DK-52121 and HL-68607. The authors have applied for a trademark and have a patent application for a measure of fructose consumption. Drs Gollub and Johnson also have a contract to author a book on the topic of fructose by Rodale Press.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Johnson MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segal, M.S., Gollub, E. & Johnson, R.J. Is the fructose index more relevant with regards to cardiovascular disease than the glycemic index?. Eur J Nutr 46, 406–417 (2007). https://doi.org/10.1007/s00394-007-0680-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-007-0680-9

Keywords

Navigation