Skip to main content
Log in

Autonomic involvement in idiopathic premature ventricular contractions

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Objective

To investigate autonomic involvement in different types of idiopathic premature ventricular contractions (PVCs) grouped by heart rate (HR) dependency.

Methods

One hundred and sixty PVC patients and 31 controls were enrolled. Holter ECG was used to evaluate PVC occurrence, and spectral analysis of heart rate variability (HRV) was calculated to represent cardiac autonomic control. PVCs were divided into fast rate-dependent (F-PVC), slow rate-dependent (S-PVC), and HR-independent PVC (I-PVC) based on the relationship between hourly PVC density and hourly HR. HRV among different types of PVCs were compared, and the association between PVC density with HR and HRV were analyzed. Furthermore, autonomic changes assessed by consecutive 5-min HRV in 30 min before PVC episodes were investigated.

Results

In 160 subjects, there were 73 F-PVC, 56 S-PVC, and 31 I-PVC. Hourly PVC density was positively associated with sympathetic indice (LF/HF) and negatively related to vagal indices (HF and HFnu) in F-PVC, and this trend was reversed in S-PVC. During 30 min before PVC onset, RR interval and HFnu decreased significantly with LF/HF showing an increasing trend in F-PVC, while in S-PVC both RR interval and HF increased significantly. It was noted that those changes were most evident during the last 5 min before PVC onset. In addition, PVC density in F-PVC was significantly decreased by β-blocker treatment.

Conclusions

HR dependency reflected autonomic modulation of idiopathic PVCs. F-PVC and S-PVC might be facilitated by sympathetic activation and vagal activation, respectively. HR dependency and the related autonomic mechanisms should be considered when treating idiopathic PVCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tomaselli GF, Zipes DP (2004) What causes sudden death in heart failure? Circ Res 95(8):754–763. doi:10.1161/01.RES.0000145047.14691.db

    Article  PubMed  CAS  Google Scholar 

  2. Inagaki M, Kawada T, Lie M, Zheng C, Sunagawa K, Sugimachi M (2005) Intravascular parasympathetic cardiac nerve stimulation prevents ventricular arrhythmias during acute myocardial ischemia. Conf Proc IEEE Eng Med Biol Soc 7:7076–7079. doi:10.1109/IEMBS.2005.1616136

    PubMed  CAS  Google Scholar 

  3. Vanoli E, De Ferrari GM, Stramba-Badiale M, Hull SS Jr, Foreman RD, Schwartz PJ (1991) Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ Res 68(5):1471–1481

    Article  PubMed  CAS  Google Scholar 

  4. La Rovere MT, Pinna GD, Hohnloser SH, Marcus FI, Mortara A, Nohara R, Bigger JT Jr, Camm AJ, Schwartz PJ (2001) Baroreflex sensitivity and heart rate variability in the identification of patients at risk for life-threatening arrhythmias: implications for clinical trials. Circulation 103(16):2072–2077

    Article  PubMed  Google Scholar 

  5. Behling A, Moraes RS, Rohde LE, Ferlin EL, Nobrega AC, Ribeiro JP (2003) Cholinergic stimulation with pyridostigmine reduces ventricular arrhythmia and enhances heart rate variability in heart failure. Am Heart J 146(3):494–500. doi:10.1016/S0002-8703(03)00319-3

    Article  PubMed  CAS  Google Scholar 

  6. Zimmermann M (2005) Sympathovagal balance prior to onset of repetitive monomorphic idiopathic ventricular tachycardia. Pacing Clin Electrophysiol 28(Suppl 1):S163–S167. doi:10.1111/j.1540-8159.2005.00010.x

    Article  PubMed  Google Scholar 

  7. Hayashi H, Fujiki A, Tani M, Mizumaki K, Shimono M, Inoue H (1997) Role of sympathovagal balance in the initiation of idiopathic ventricular tachycardia originating from right ventricular outflow tract. Pacing Clin Electrophysiol 20(10 Pt 1):2371–2377

    Article  PubMed  CAS  Google Scholar 

  8. Osaka M, Saitoh H, Sasabe N, Atarashi H, Katoh T, Hayakawa H, Cohen RJ (1996) Changes in autonomic activity preceding onset of nonsustained ventricular tachycardia. Ann Noninvasive Electrocardiol 1(1):3–11

    Article  PubMed  CAS  Google Scholar 

  9. Fei L, Statters DJ, Hnatkova K, Poloniecki J, Malik M, Camm AJ (1994) Change of autonomic influence on the heart immediately before the onset of spontaneous idiopathic ventricular tachycardia. J Am Coll Cardiol 24(6):1515–1522

    Article  PubMed  CAS  Google Scholar 

  10. Mizumaki K, Nishida K, Iwamoto J, Nakatani Y, Yamaguchi Y, Sakamoto T, Tsuneda T, Kataoka N, Inoue H (2011) Vagal activity modulates spontaneous augmentation of J-wave elevation in patients with idiopathic ventricular fibrillation. Heart Rhythm. doi:10.1016/j.hrthm.2011.09.055

    PubMed  Google Scholar 

  11. Kasanuki H, Ohnishi S, Ohtuka M, Matsuda N, Nirei T, Isogai R, Shoda M, Toyoshima Y, Hosoda S (1997) Idiopathic ventricular fibrillation induced with vagal activity in patients without obvious heart disease. Circulation 95(9):2277–2285

    Article  PubMed  CAS  Google Scholar 

  12. Hachiya H, Aonuma K, Yamauchi Y, Sekiguchi Y, Iesaka Y (2005) Edrophonium-induced right ventricular outflow tract tachycardia. Pacing Clin Electrophysiol 28(Suppl 1):S158–S162. doi:10.1111/j.1540-8159.2005.00007.x

    Article  PubMed  Google Scholar 

  13. Gillis AM, Guilleminault C, Partinen M, Connolly SJ, Winkle RA (1989) The diurnal variability of ventricular premature depolarizations: influence of heart rate, sleep, and wakefulness. Sleep 12(5):391–399

    PubMed  CAS  Google Scholar 

  14. Kanei Y, Friedman M, Ogawa N, Hanon S, Lam P, Schweitzer P (2008) Frequent premature ventricular complexes originating from the right ventricular outflow tract are associated with left ventricular dysfunction. Ann Noninvasive Electrocardiol 13(1):81–85. doi:10.1111/j.1542-474X.2007.00204.x

    Article  PubMed  Google Scholar 

  15. (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 93(5):1043–1065

  16. Physick-Sheard PW, McGurrin MK (2010) Ventricular arrhythmias during race recovery in Standardbred Racehorses and associations with autonomic activity. J Vet Intern Med 24(5):1158–1166. doi:10.1111/j.1939-1676.2010.0553.x

    Article  PubMed  CAS  Google Scholar 

  17. Farkas A, Dempster J, Coker SJ (2008) Importance of vagally mediated bradycardia for the induction of torsade de pointes in an in vivo model. Br J Pharmacol 154(5):958–970. doi:10.1038/bjp.2008.154

    Article  PubMed  CAS  Google Scholar 

  18. Hasdemir C, Alp A, Aydin M, Can LH (2009) Human model simulating right ventricular outflow tract tachycardia by high-frequency stimulation in the left pulmonary artery: autonomics and idiopathic ventricular arrhythmias. J Cardiovasc Electrophysiol 20(7):759–763. doi:10.1111/j.1540-8167.2009.01442.x

    Article  PubMed  Google Scholar 

  19. Zhou J, Scherlag BJ, Yamanashi W, Wu R, Huang Y, Lazzara R, Jackman WM, Po SS (2006) Experimental model simulating right ventricular outflow tract tachycardia: a novel technique to initiate RVOT-VT. J Cardiovasc Electrophysiol 17(7):771–775. doi:10.1111/j.1540-8167.2006.00509.x

    Article  PubMed  Google Scholar 

  20. Lerman BB, Belardinelli L, West GA, Berne RM, DiMarco JP (1986) Adenosine-sensitive ventricular tachycardia: evidence suggesting cyclic AMP-mediated triggered activity. Circulation 74(2):270–280

    Article  PubMed  CAS  Google Scholar 

  21. Weiss JN, Garfinkel A, Karagueuzian HS, Chen PS, Qu Z (2010) Early afterdepolarizations and cardiac arrhythmias. Heart Rhythm 7(12):1891–1899. doi:10.1016/j.hrthm.2010.09.017

    Article  PubMed  Google Scholar 

  22. Benson H, Alexander S, Feldman CL (1975) Decreased premature ventricular contractions through use of the relaxation response in patients with stable ischaemic heart-disease. Lancet 2(7931):380–382

    Article  PubMed  CAS  Google Scholar 

  23. Cowan MJ, Kogan H, Burr R, Hendershot S, Buchanan L (1990) Power spectral analysis of heart rate variability after biofeedback training. J Electrocardiol 23(Suppl):85–94

    Article  PubMed  Google Scholar 

  24. Dobsak P, Tomandl J, Spinarova L, Vitovec J, Dusek L, Novakova M, Jarkovsky J, Krejci J, Hude P, Honek T, Siegelova J, Homolka P (2012) Effects of neuromuscular electrical stimulation and aerobic exercise training on arterial stiffness and autonomic functions in patients with chronic heart failure. Artif Organs 36(10):920–930. doi:10.1111/j.1525-1594.2012.01474.x

    Article  PubMed  Google Scholar 

  25. Roy B, Choudhuri R, Pandey A, Bandopadhyay S, Sarangi S, Kumar Ghatak S (2012) Effect of rotating acoustic stimulus on heart rate variability in healthy adults. Open Neurol J 6:71–77. doi:10.2174/1874205X01206010071

    Article  PubMed  Google Scholar 

  26. Valenti VE, Guida HL, Frizzo AC, Cardoso AC, Vanderlei LC, de Abreu LC (2012) Auditory stimulation and cardiac autonomic regulation. Clinics (Sao Paulo) 67(8):955–958. Pii: S1807-59322012000800016

    Article  Google Scholar 

  27. Alvarsson JJ, Wiens S, Nilsson ME (2010) Stress recovery during exposure to nature sound and environmental noise. Int J Environ Res Public Health 7(3):1036–1046. doi:10.3390/ijerph7031036

    Article  PubMed  Google Scholar 

  28. Koizumi S, Minamisawa S, Sasaguri K, Onozuka M, Sato S, Ono Y (2011) Chewing reduces sympathetic nervous response to stress and prevents poststress arrhythmias in rats. Am J Physiol Heart Circ Physiol 301(4):H1551–H1558. doi:10.1152/ajpheart.01224.2010

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant 81070143 from National Natural Science Foundation of China (HJ), Grant 81100128 from National Natural Science Foundation of China (BC), Grant 81270250 from National Natural Science Foundation of China (ZL), Grant 81270339 from National Natural Science Foundation of China (HJ), Grant 4101024 from the Fundamental Research Funds for the Central Universities (ZL) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20100141120072, ZL).

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Jiang.

Additional information

W. He and Z. Lu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (jpeg 4634 kb)

Supplementary material 2 (XPS 94 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, W., Lu, Z., Bao, M. et al. Autonomic involvement in idiopathic premature ventricular contractions. Clin Res Cardiol 102, 361–370 (2013). https://doi.org/10.1007/s00392-013-0545-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-013-0545-6

Keywords

Navigation