Skip to main content
Log in

Rückgang der Nierenfunktion im Alter

Teil des physiologischen Alterns vs. Alterskrankheit

Decline in renal function in old age

Part of physiological aging versus age-related disease

  • Beiträge zum Themenschwerpunkt
  • Published:
Zeitschrift für Gerontologie und Geriatrie Aims and scope Submit manuscript

Zusammenfassung

Inzidenz und Prävalenz der chronischen Niereninsuffizienz („chronic kidney disease“, CKD) nehmen bei älteren Menschen weltweit zu. Dabei ist die Abnahme der Nierenfunktion im Alter einerseits Teil des physiologischen Altersprozesses, aber andererseits auch Ausdruck der Multimorbidität vieler älterer Menschen. Die Berechnung der glomerulären Filtrationsrate (GFR) anhand spezifischer, in der älteren Bevölkerung validierter mathematischer Algorithmen und der Nachweis einer gesteigerten Proteinausscheidung über den Urin erlauben auch bei geriatrischen Patienten die gezielte Abschätzung der Nierenfunktion. Die reduzierte Nierenfunktion hat vielfältige klinische Konsequenzen, einschließlich einer verzögerten Ausscheidung harnpflichtiger Substanzen, einer reduzierten Blutbildung, Störungen im Elektrolyt- und Säure-Base-Haushalt oder Knochenstoffwechsel. Darüber hinaus fördert eine reduzierte Nierenfunktion auf vielfältige Art und Weise direkt das Auftreten geriatrischer Syndrome, insbesondere des „Frailty“-Syndroms. Therapeutische Strategien, ein kontinuierliches Fortschreiten einer Niereninsuffizienz zu verhindern, umfassen neben der Therapie der Grunderkrankungen v. a. die konsequente Blutdruck- und Diabeteseinstellung sowie das Vermeiden potenziell nephrotoxischer Medikamente.

Abstract

The incidence and prevalence of chronic renal disease (CKD) in elderly patients are continuously increasing worldwide. Loss of renal function is not only considered to be part of the aging process itself but also reflects the multimorbidity of many geriatric patients. Calculating the glomerular filtration rate using specific algorithms validated for the elderly population and measuring the amount of proteinuria allow an estimation of renal function in elderly patients with high accuracy. Chronic renal failure has many clinical consequences and not only results in a delayed excretion of toxins cleared by the kidneys but also affects hematogenesis, water and electrolyte balance as well as mineral bone metabolism. Furthermore, CKD directly leads to and aggravates geriatric syndromes and in particular the onset of frailty. Therapeutic strategies to halt progression of CKD not only comprise treatment of the underlying disease but also efficient blood pressure and diabetic control and the avoidance of nephrotoxic medications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Agganis BT, Weiner DE, Giang LM, Scott T, Tighiouart H, Griffith JL, Sarnak MJ (2010) Depression and cognitive function in maintenance hemodialysis patients. Am J Kidney Dis 56:704–712

    Article  PubMed Central  Google Scholar 

  2. Anderson S, Rennke HG, Zatz R (1994) Glomerular adaptations with normal aging and with long-term converting enzyme inhibition in rats. Am J Physiol 267:F35–F43

    CAS  Google Scholar 

  3. Anderson, S. (1997). Ageing and the renin-angiotensin system. Nephrology Dialysis Transplantation 12(6):1093–1094

  4. Ljungqvist ACL (1962) Normal intrarenal arterial pattern in adult and ageing human kidney: A micro-angiographical and histological study. J Anat 96:285

    CAS  PubMed Central  Google Scholar 

  5. Barzilai N, Huffman DM, Muzumdar RH, Bartke A (2012) The critical role of metabolic pathways in aging. Diabetes 61:1315–1322

    Article  CAS  PubMed Central  Google Scholar 

  6. Baylis C (2009) Sexual dimorphism in the aging kidney: differences in the nitric oxide system. Nat Rev Nephrol 5:384–396

    Article  CAS  Google Scholar 

  7. Bolignano D, Mattace-Raso F, Sijbrands EJG, Zoccali C (2014) The aging kidney revisited: A systematic review. Ageing Res Rev. doi:10.1016/j.arr.2014.02.003

    Google Scholar 

  8. Braun F, Rinschen MM, Bartels V, Frommolt P, Habermann B, Hoeijmakers JHJ, Schumacher B, Dollé MET, Müller RU, Benzing T, Schermer B, Kurschat CE (2016) Altered lipid metabolism in the aging kidney identified by three layered omic analysis. Aging (Albany NY) 8:441

    Article  Google Scholar 

  9. Abrass CK, Adcox MJ, Raugi GJ (1995) Aging-associated changes in renal extracellular matrix. Am J Pathol 146:742

    CAS  PubMed Central  Google Scholar 

  10. Carrero JJ, Stenvinkel P, Cuppari L, Ikizler TA, Kalantar-Zadeh K, Kaysen G, Mitch WE, Price SR, Wanner C, Wang AYM, Wee ter P, Franch HA (2013) Etiology of the protein-energy wasting syndrome in chronic kidney disease: a consensus statement from the International Society of Renal Nutrition and Metabolism (ISRNM). J Ren Nutr 23:77–90

    Article  Google Scholar 

  11. Cesari M, Gambassi G, van Kan GA, Vellas B (2014) The frailty phenotype and the frailty index: different instruments for different purposes. Age Ageing 43:10–12

    Article  Google Scholar 

  12. Chawla LS, Eggers PW, Star RA, Kimmel PL (2014) Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med 371:58–66

    Article  Google Scholar 

  13. Chronic Kidney Disease Prognosis Consortium, Matsushita K, van der Velde M, Astor CB, Woodward M, Levey AS, de Jong PE, Coresh J, Gansevoort RT (2010) Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375:2073–2081

    Article  Google Scholar 

  14. Cockcroft DW, Gault H (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41

    Article  CAS  Google Scholar 

  15. Coresh J, Astor BC, Greene T, Eknoyan G, Levey AS (2003) Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis 41:1–12

    Article  Google Scholar 

  16. Davies DF, Shock NW (1950) Age changes in glomerular filtration rate, effective renal plasma flow, and tubular excretory capacity in adult males. J Clin Invest 29:496–507

    Article  CAS  PubMed Central  Google Scholar 

  17. Davis B, Dei CA, Long DA, White KE, Hayward A, Ku C‑H, Woolf AS, Bilous R, Viberti G, Gnudi L (2007) Podocyte-specific expression of angiopoietin-2 causes proteinuria and apoptosis of glomerular endothelia. J Am Soc Nephrol 18:2320–2329

    Article  CAS  Google Scholar 

  18. Delanaye P, Schaeffner E, Ebert N, Cavalier E, Mariat C, Krzesinski J‑M, Moranne O (2012) Normal reference values for glomerular filtration rate: What do we really know? Nephrol Dial Transplant 27:2664–2672

    Article  Google Scholar 

  19. Ellis HA, Pierides AM, Feest TG, Ward MK, Kerr DN (1977) Histopathology of renal osteodystrophy with particular reference to the effects of 1alpha-hydroxyvitamin D3 in patients treated by long-term haemodialysis. Clin Endocrinol (Oxf) 7(Suppl):31s–38s

    Article  Google Scholar 

  20. Emamian SA, Nielsen MB, Pedersen JF, Ytte L (1993) Kidney dimensions at sonography: correlation with age, sex, and habitus in 665 adult volunteers. Am J Roentgenol 160(1):83–86

    Article  CAS  Google Scholar 

  21. Finney H, Bates CJ, Price CP (1999) Plasma cystatin C determinations in a healthy elderly population. Arch Gerontol Geriatr 29:75–94

    Article  CAS  Google Scholar 

  22. Fliser D, Ritz E (2001) Serum cystatin C concentration as a marker of renal dysfunction in the elderly. Am J Kidney Dis 37:79–83

    Article  CAS  Google Scholar 

  23. Foley RN, Wang C, Ishani A, Collins AJ, Murray AM (2007) Kidney function and sarcopenia in the United States general population: NHANES III. Am J Nephrol 27:279–286

    Article  Google Scholar 

  24. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G, McBurnie MA, Cardiovascular Health Study Collaborative Research Group (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56:M146–M156

    Article  CAS  Google Scholar 

  25. Funes JÁ, Amieva H (2009) Cognitive impairment improves the predictive validity of the phenotype of frailty for adverse health outcomes: the three city study. J Am Geriatr Soc 57:453

    Article  Google Scholar 

  26. Gallagher JC, Rapuri P, Smith L (2007) Falls are associated with decreased renal function and insufficient calcitriol production by the kidney. J Steroid Biochem Mol Biol 103:610–613

    Article  CAS  Google Scholar 

  27. GBD 2013 DALYs and HALE Collaborators, Murray CJL, Barber RM, Foreman KJ et al (2015) Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition. Lancet. doi:10.1016/S0140-6736(15)61340-X

    PubMed Central  Google Scholar 

  28. Glassock RJ, Rule AD (2016) Aging and the kidneys: anatomy, physiology and consequences for defining chronic kidney disease. Nephron. doi:10.1159/000445450

    Google Scholar 

  29. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu C‑Y (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351:1296–1305

    Article  CAS  Google Scholar 

  30. Goyal VK (1982) Changes with age in the human kidney. Exp Gerontol 17:321

    Article  CAS  Google Scholar 

  31. Hoang K, Tan JC, Derby G, Blouch KL, Masek M, Ma I, Lemley KV, Myers BD (2003) Determinants of glomerular hypofiltration in aging humans. Kidney Int 64:1417–1424

    Article  Google Scholar 

  32. Hollenberg NK, Adams DF, Solomon HS, Rashid A, Abrams HL, Merrill JP (1974) Senescence and the renal vasculature in normal man. Circ Res 34:309–316

    Article  CAS  Google Scholar 

  33. Hollenberg NK, Rivera A, Meinking T, Martinez G, McCullough M, Passan D, Preston M, Taplin D, Vicaria-Clement M (1999) Age, renal perfusion and function in island-dwelling indigenous Kuna Amerinds of Panama. Nephron 82:131–138

    Article  CAS  Google Scholar 

  34. Hsu C‑Y, Propert K, Xie D, Hamm L, He J, Miller E, Ojo A, Shlipak M, Teal V, Townsend R, Weir M, Wilson J, Feldman H, CRIC Investigators (2011) Measured GFR does not outperform estimated GFR in predicting CKD-related complications. J Am Soc Nephrol 22:1931–1937

    Article  CAS  PubMed Central  Google Scholar 

  35. Hultstrom M, Leh S, Paliege A, Bachmann S, Skogstrand T, Iversen BM (2012) Collagen-binding proteins in age-dependent changes in renal collagen turnover: microarray analysis of mRNA expression. Physiol Genomics 44:576–586

    Article  CAS  Google Scholar 

  36. Isoyama N, Qureshi AR, Avesani CM, Lindholm B, Bàràny P, Heimbürger O, Cederholm T, Stenvinkel P, Carrero JJ (2014) Comparative associations of muscle mass and muscle strength with mortality in dialysis patients. Clin J Am Soc Nephrol 9:1720–1728

    Article  PubMed Central  Google Scholar 

  37. Jager KJ, van Dijk PCW, Dekker FW, Stengel B, Simpson K, Briggs JD, ERA-EDTA Registry Committee (2003) The epidemic of aging in renal replacement therapy: an update on elderly patients and their outcomes. Clin Nephrol 60:352–360

    Article  CAS  Google Scholar 

  38. Jiang T, Liebman SE, Lucia MS, Li J, Levi M (2005) Role of altered renal lipid metabolism and the sterol regulatory element binding proteins in the pathogenesis of age-related renal disease. Kidney Int 68:2608–2620

    Article  CAS  Google Scholar 

  39. Johansen KL, Chertow GM, Jin C, Kutner NG (2007) Significance of frailty among dialysis patients. J Am Soc Nephrol 18:2960–2967

    Article  Google Scholar 

  40. Johansen KL, Dalrymple LS, Delgado C, Kaysen GA, Kornak J, Grimes B, Chertow GM (2014) Association between body composition and frailty among prevalent hemodialysis patients: A US renal data system special study. J Am Soc Nephrol 25:381–389

    Article  Google Scholar 

  41. Johansen KL, Lee C (2015) Body composition in chronic kidney disease. Curr Opin Nephrol Hypertens. doi:10.1097/MNH.0000000000000120

    PubMed Central  Google Scholar 

  42. Johnson D (2005) Use of cystatin C measurement in evaluating kidney function. Nephrology (Carlton) 10:S157–S167

    Article  Google Scholar 

  43. Kalantar-Zadeh K, Block G, McAllister CJ, Humphreys MH, Kopple JD (2004) Appetite and inflammation, nutrition, anemia, and clinical outcome in hemodialysis patients. Am J Clin Nutr 80:299–307

    CAS  Google Scholar 

  44. Kalantar-Zadeh K, Ikizler TA, Block G, Avram MM, Kopple JD (2003) Malnutrition-inflammation complex syndrome in dialysis patients: causes and consequences. Am J Kidney Dis 42:864–881

    Article  Google Scholar 

  45. Kang D‑H, Kanellis J, Hugo C, Truong L, Anderson S, Kerjaschki D, Schreiner GF, Johnson RJ (2002) Role of the microvascular endothelium in progressive renal disease. J Am Soc Nephrol 13:806–816

    Article  Google Scholar 

  46. Kaplan C, Pasternack B, Shah H, Gallo G (1975) Age-related incidence of sclerotic glomeruli in human kidneys. Am J Pathol 80(2):227–234

    CAS  PubMed Central  Google Scholar 

  47. Kappel B, Olsen S (1980) Cortical interstitial tissue and sclerosed glomeruli in the normal human kidney, related to age and sex. A quantitative study. Virchows Arch A Pathol Anat Histol 387:271–277

    Article  CAS  Google Scholar 

  48. Karakizlis H, Mühlfeld A (2013) Cognitive impairment, chronic kidney disease and age. Nephrologe 9:33–38

    Article  Google Scholar 

  49. Kasiske BL, Umen AJ (1986) The influence of age, sex, race, and body habitus on kidney weight in humans. Arch Pathol Lab Med 110:55–60

    CAS  Google Scholar 

  50. Ketteler M, Schlieper G (2014) CKD-MBD in elderly patients. Nephrologe 9:26–32

    Article  Google Scholar 

  51. Lazarus B, Chen Y, Wilson FP, Sang Y, Chang AR, Coresh J, Grams ME (2016) Proton pump inhibitor use and the risk of chronic kidney disease. JAMA Intern Med 176. doi:10.1001/jamainternmed.2015.7193

    Google Scholar 

  52. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 130:461–470

    Article  CAS  Google Scholar 

  53. Levey AS (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604

    Article  PubMed Central  Google Scholar 

  54. Lindeman RD, Tobin JD, Shock NW (1984) Association between blood pressure and the rate of decline in renal function with age. Kidney Int 26:861–868

    Article  CAS  Google Scholar 

  55. Malmgren L, McGuigan FE, Berglundh S, Westman K, Christensson A, Åkesson K (2015) Declining estimated glomerular filtration rate and its association with mortality and comorbidity over 10 years in elderly women. Nephron 130:245–255

    Article  Google Scholar 

  56. Martinson M, Ikizler TA, Morrell G, Wei G, Almeida N, Marcus RL, Filipowicz R, Greene TH, Beddhu S (2014) Associations of body size and body composition with functional ability and quality of life in hemodialysis patients. Clin J Am Soc Nephrol 9:1082–1090

    Article  PubMed Central  Google Scholar 

  57. McLachlan MS (1978) The ageing kidney. Lancet 2:143–145

    Article  CAS  Google Scholar 

  58. Kang DH, Anderson S, Kim YG et al (2001) Impaired Angiogenesis in the aging kidney: vascular endothelial growth factor and thrombospondin-1 in renal disease. Am J Kidney Dis 37:601–611

    Article  CAS  Google Scholar 

  59. Moens AL, Kass DA (2006) Tetrahydrobiopterin and cardiovascular disease. Arterioscler Thromb Vasc Biol 26:2439–2444

    Article  CAS  Google Scholar 

  60. Neugarten J, Gallo G, Silbiger S, Kasiske B (1999) Glomerulosclerosis in aging humans is not influenced by gender. Am J Kidney Dis 34:884–888

    Article  CAS  Google Scholar 

  61. Nyengaard JR, Bendtsen TF (1992) Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec 232:194–201

    Article  CAS  Google Scholar 

  62. Perico N, Remuzzi G, Benigni A (2011) Aging and the kidney. Curr Opin Nephrol Hypertens 20:312–317

    Article  CAS  Google Scholar 

  63. Reese PP, Cappola AR, Shults J, Townsend RR, Gadegbeku CA, Anderson C, Baker JF, Carlow D, Sulik MJ, Lo JC, Go AS, Ky B, Mariani L, Feldman HI, Leonard MB, Study Investigators (2013) Physical performance and frailty in chronic kidney disease. Am J Nephrol 38:307–315

    Article  PubMed Central  Google Scholar 

  64. Roshanravan B, Khatri M, Robinson-Cohen C, Levin G, Patel KV, de Boer IH, Seliger S, Ruzinski J, Himmelfarb J, Kestenbaum B (2012) A prospective study of frailty in nephrology-referred patients with CKD. Am J Kidney Dis 60:912–921

    Article  PubMed Central  Google Scholar 

  65. Ross GW, Petrovitch H, White LR, Masaki KH, Li CY, Curb JD, Yano K, Rodriguez BL, Foley DJ, Blanchette PL, Havlik R (1999) Characterization of risk factors for vascular dementia: the Honolulu-Asia Aging Study. Neurology 53:337–343

    Article  CAS  Google Scholar 

  66. Sarnak MJ, Katz R, Fried LF, Siscovick D, Kestenbaum B, Seliger S, Rifkin D, Tracy R, Newman AB, Shlipak MG, Cardiovascular Health Study (2008) Cystatin C and aging success. Arch Intern Med 168:147–153

    Article  CAS  PubMed Central  Google Scholar 

  67. Sarnak MJ, Tighiouart H, Scott TM, Lou KV, Sorensen EP, Giang LM, Drew DA, Shaffi K, Strom JA, Singh AK, Weiner DE (2013) Frequency of and risk factors for poor cognitive performance in hemodialysis patients. Neurology 80:471–480

    Article  PubMed Central  Google Scholar 

  68. Schaeffner ES, Ebert N, Delanaye P, Frei U, Gaedeke J, Jakob O, Kuhlmann MK, Schuchardt M, Tölle M, Ziebig R, van der Giet Martus MP (2012) Two novel equations to estimate kidney function in persons aged 70 years or older. Ann Intern Med 157:471–481

    Article  Google Scholar 

  69. Schmitt R, Coca S, Kanbay M, Tinetti ME (2008) Recovery of kidney function after acute kidney injury in the elderly: A systematic review and meta-analysis. Am J 52:262

    Google Scholar 

  70. Schumacher B, van der Pluijm I, Moorhouse MJ, Kosteas T, Robinson AR, Suh Y, Breit TM, van Steeg H, Niedernhofer LJ, van Ijcken W, Bartke A, Spindler SR, Hoeijmakers JHJ, van der Horst GTJ, Garinis GA (2008) Delayed and accelerated aging share common longevity assurance mechanisms. Plos Genet 4:e1000161

    Article  PubMed Central  Google Scholar 

  71. Shlipak MG, Coresh J, Gansevoort RT (2013) Cystatin C versus creatinine for kidney function-based risk. N Engl J Med 369:2459

    Article  CAS  Google Scholar 

  72. Shlipak MG, Fried LF, Crump C, Bleyer AJ, Manolio TA, Tracy RP, Furberg CD, Psaty BM (2003) Elevations of inflammatory and procoagulant biomarkers in elderly persons with renal insufficiency. Circulation 107:87–92

    Article  CAS  Google Scholar 

  73. Shlipak MG, Stehman-Breen C, Fried LF, Song X, Siscovick D, Fried LP, Psaty BM, Newman AB (2004) The presence of frailty in elderly persons with chronic renal insufficiency. Am J Kidney Dis 43:861–867

    Article  Google Scholar 

  74. Stenvinkel P (2010) Chronic kidney disease: a public health priority and harbinger of premature cardiovascular disease. J Intern Med 268:456–467

    Article  CAS  Google Scholar 

  75. Takazakura E, Sawabu N, Handa A, Takada A (1972) Intrarenal vascular changes with age and disease. Kidney Int 2:224

    Article  CAS  Google Scholar 

  76. Tauchi H, Tsuboi K, Okutomi J (1971) Age changes in the human kidney of the different races. Gerontologia 17:87–97

    Article  CAS  Google Scholar 

  77. Tolbert EM, Weisstuch J, Feiner HD, Dworkin LD (2000) Onset of glomerular hypertension with aging precedes injury in the spontaneously hypertensive rat. AJP Rep 278:F839–F846

    CAS  Google Scholar 

  78. Tonelli M, Riella M (2014) Chronic kidney disease and the aging population. Am J Nephrol 39:248–251

    Article  Google Scholar 

  79. Walker SR, Gill K, Macdonald K, Komenda P, Rigatto C, Sood MM, Bohm CJ, Storsley LJ, Tangri N (2013) Association of frailty and physical function in patients with non-dialysis CKD: A systematic review. BMC Nephrol 14:228

    Article  PubMed Central  Google Scholar 

  80. Wilhelm-Leen ER, Hall YN, Tamura Chertow KMGM (2009) Frailty and chronic kidney disease: the Third National Health and Nutrition Evaluation Survey. Am J Med 122(71):664–671 (e2)

    Article  PubMed Central  Google Scholar 

  81. Young EW, Albert JM, Satayathum S, Goodkin DA, Pisoni RL, Akiba T, Akizawa T, Kurokawa K, Bommer J, Piera L, Port FK (2005) Predictors and consequences of altered mineral metabolism: the Dialysis Outcomes and Practice Patterns Study. Kidney Int 67:1179–1187

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. T. Brinkkötter.

Ethics declarations

Interessenkonflikt

F. Braun und P.T. Brinkkötter geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braun, F., Brinkkötter, P.T. Rückgang der Nierenfunktion im Alter. Z Gerontol Geriat 49, 469–476 (2016). https://doi.org/10.1007/s00391-016-1109-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00391-016-1109-y

Schlüsselwörter

Keywords

Navigation