Skip to main content
Log in

C-reactive protein and the acute phase reaction in geriatric patients

C-reaktives Protein und die Akute-Phase-Reaktion bei geriatrischen Patienten

  • Beiträge zum Themenschwerpunkt
  • Published:
Zeitschrift für Gerontologie und Geriatrie Aims and scope Submit manuscript

Abstract

The C-reactive protein (CRP), first described as a serum component capable of precipitating the C-polysaccharide of pneumococci, is one of the most important proteins because the serum concentration rises in the acute phase reaction. The acute phase reaction is the nonspecific reaction of the body to noxious stimuli of the most varied kinds, such as infections, burns, neoplasms and tissue trauma. The CRP is synthesized in liver parenchymal cells by cytokines which are derived from stimulated leucocytes and released into the circulation. Because of its molecular structure and in synergy with the complement system, it is able to precipitate and/or lyse microorganisms, thereby rendering them harmless. Measurement of the serum CRP concentration can provide important information with respect to the diagnosis and monitoring of treatment. Due to immunosenescence in geriatric patients the synthesis of CRP appears to be limited to inflammatory stimuli; however, this phenomenon does not appear to be of major clinical relevance. Despite the introduction of new parameters of the acute phase reaction, sometimes with better performance, such as interleukin-6, procalcitonin and the soluble endotoxin receptor sCD14, measurement of CRP for diagnosis and treatment monitoring is still justified even in geriatric patients as testing is rapid, economic and nearly ubiquitously available round the clock. Biochemical markers of the acute phase reaction should always be interpreted together with the clinical picture and their specific limitations.

Zusammenfassung

Das C-reaktive Protein (CRP) – erstmals beschrieben als Serumkomponente, welche in der Lage ist, das C-Polysaccharid der Pneumokokken zu präzipitieren – ist eines der wichtigsten Proteine, dessen Serumkonzentration im Rahmen der Akute-Phase-Reaktion ansteigt. Die Akute-Phase-Reaktion ist die unspezifische Reaktion des Körpers auf Noxen verschiedenster Art, wie beispielsweise Infektionen, Verbrennungen, Neoplasien und Gewebstraumen. CRP wird durch Zytokine, die aus stimulierten Leukozyten stammen, in den Leberparenchymzellen synthetisiert und in die Blutzirkulation abgegeben. Dort vermag es u. a. aufgrund seiner Molekülstruktur in Synergie mit dem Komplementsystem Mikroorganismen zu präzipitieren bzw. zu lysieren und damit unschädlich zu machen. Die Messung der CRP-Konzentration im Serum kann wichtige Informationen bezüglich Diagnostik und Therapiemonitoring bereitstellen. Aufgrund der Immunseneszenz beim geriatrischen Patienten scheint die CRP-Synthese auf einen inflammatorischen Reiz hin eingeschränkt zu sein. Dieses Phänomen scheint jedoch klinisch nicht von größerer Relevanz zu sein. Damit ist die Messung des CRP auch beim geriatrischen Patienten zur Diagnostik und zum Therapiemonitoring – trotz der Einführung neuer Messgrößen der Akute-Phase-Reaktion mit z. T besserer Performance, wie Interleukin-6, Procalcitonin und dem löslichen Endotoxinrezeptor sCD14 – aufgrund der schnellen, fast ubiquitär rund um die Uhr verfügbaren ökonomisch günstigen Messmöglichkeiten immer noch berechtigt. Grundsätzlich sollten biochemische Marker der Akute-Phase-Reaktion immer zusammen mit dem klinischen Bild und ihren spezifischen Limitationen interpretiert werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abernethy TJ, Avery OT (1941) The occurrence during acute infections of a protein not normally present in the blood : I. distribution of the reactive protein in patients’ sera and the effect of calcium on the flocculation reaction with C polysaccharide of pneumococcus. J Exp Med 73:173–182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Ball EM, Gibson DS, Bell AL et al (2014) Plasma IL-6 levels correlate with clinical and ultrasound measures of arthritis in patients with systemic lupus erythematosus. Lupus 23:46–56

    Article  CAS  PubMed  Google Scholar 

  3. Banks RE, Forbes MA, Patel PM et al (2000) Subcutaneous administration of recombinant glycosylated interleukin 6 in patients with cancer: pharmacokinetics, pharmacodynamics and immunomodulatory effects. Cytokine 12:388–396

    Article  CAS  PubMed  Google Scholar 

  4. Behnes M, Bertsch T, Lepiorz D et al (2014) Diagnostic and prognostic utility of soluble CD 14 subtype (presepsin) for severe sepsis and septic shock during the first week of intensive care treatment. Crit Care 18:507

    Article  PubMed Central  PubMed  Google Scholar 

  5. Bertsch T, Banks RE, Forbes MA et al (1996) Phospholipase A2 activity in serum is induced during treatment with recombinant human interleukin-6 in patients with cancer. Ann Clinl Biochem 33:565–567

    Article  Google Scholar 

  6. Bodman-Smith KB, Melendez AJ, Campbell I et al (2002) C-reactive protein-mediated phagocytosis and phospholipase D signalling through the high-affinity receptor for immunoglobulin G (FcgammaRI). Immunology 107:252–260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Boenisch S, Fae P, Drexel H et al (2013) Are circulating levels of CRP compared to IL-6 and PCT still relevant in intensive care unit patients? (English Version). J Lab Med. doi:10.1515/labmed-2013-0029

  8. Boenisch S, Fae P, Drexel H et al (2013) Spielen CRP-Spiegel neben IL-6 und PCT noch eine Rolle für Patienten auf Intensivstationen?/Are circulating levels of CRP compared to IL-6 and PCT still relevant in intensive care unit patients? (German Version). J Lab Med 37:1–11. doi:10.1515/labmed-2012-0010

    CAS  Google Scholar 

  9. Brunkhorst R, Eberhardt OK, Haubitz M et al (2000) Procalcitonin for discrimination between activity of systemic autoimmune disease and systemic bacterial infection. Intensive Care Med 26(Suppl 2):S199–201

    Article  PubMed  Google Scholar 

  10. Calabro P, Chang DW, Willerson JT et al (2005) Release of C-reactive protein in response to inflammatory cytokines by human adipocytes: linking obesity to vascular inflammation. J Am Coll Cardiol 46:1112–1113

    Article  CAS  PubMed  Google Scholar 

  11. Chun HY, Chung JW, Kim HA et al (2007) Cytokine IL-6 and IL-10 as biomarkers in systemic lupus erythematosus. J Clin Immunol 27:461–466

    Article  CAS  PubMed  Google Scholar 

  12. Desai A, Grolleau-Julius A, Yung R (2010) Leukocyte function in the aging immune system. J Leukoc Biol 87:1001–1009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Dong Q, Wright JR (1996) Expression of C-reactive protein by alveolar macrophages. J Immunol 156:4815–4820

    CAS  PubMed  Google Scholar 

  14. Du Clos TW (1989) C-reactive protein reacts with the U1 small nuclear ribonucleoprotein. J Immunol 143:2553–2559

    CAS  PubMed  Google Scholar 

  15. Du Clos TW (2013) Pentraxins: structure, function, and role in inflammation. ISRN Inflamm 2013:379040

    Article  PubMed Central  PubMed  Google Scholar 

  16. Du Clos TW, Marnell L, Zlock LR et al (1991) Analysis of the binding of C-reactive protein to chromatin subunits. J Immunol 146:1220–1225

    CAS  PubMed  Google Scholar 

  17. Ehrich JH, Krull F, Peltner U et al (1986) [Significance of C-reactive protein in pediatric diagnosis]. Monatsschr Kinderheilkd 134:840–846

    CAS  PubMed  Google Scholar 

  18. Gaitonde S, Samols D, Kushner I (2008) C-reactive protein and systemic lupus erythematosus. Arthritis Rheum 59:1814–1820

    Article  CAS  PubMed  Google Scholar 

  19. Gomez CR, Nomellini V, Faunce DE et al (2008) Innate immunity and aging. Exp Gerontol 43:718–728

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Heinrich PC, Müller M, Graeve L (2014) Löffler/Petrides Biochemie und Pathobiochemie. Springer-Verlag, Berlin

    Book  Google Scholar 

  21. Heppner HJ, Bertsch T, Alber B et al (2010) Procalcitonin: inflammatory biomarker for assessing the severity of community-acquired pneumonia - a clinical observation in geriatric patients. Gerontology 56:385–389

    Article  CAS  PubMed  Google Scholar 

  22. Hind CR, Winearls CG, Pepys MB (1985) Correlation of disease activity in systemic vasculitis with serum C-reactive protein measurement. A prospective study of thirty-eight patients. Eur J Clin Invest 15:89–94

    Article  CAS  PubMed  Google Scholar 

  23. Hutchinson WL, Noble GE, Hawkins PN et al (1994) The pentraxins, C-reactive protein and serum amyloid P component, are cleared and catabolized by hepatocytes in vivo. J Clin Invest 94:1390–1396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Illei GG, Tackey E, Lapteva L et al (2004) Biomarkers in systemic lupus erythematosus: II. Markers of disease activity. Arthritis Rheum 50:2048–2065

    Article  CAS  PubMed  Google Scholar 

  25. Juma WM, Lira A, Marzuk A et al (2011) C-reactive protein expression in a rodent model of chronic cerebral hypoperfusion. Brain Res 1414:85–93

    Article  CAS  PubMed  Google Scholar 

  26. Knudsen LS, Klarlund M, Skjodt H et al (2008) Biomarkers of inflammation in patients with unclassified polyarthritis and early rheumatoid arthritis. Relationship to disease activity and radiographic outcome. J Rheum 35:1277–1287

    CAS  PubMed  Google Scholar 

  27. Kuta AE, Baum LL (1986) C-reactive protein is produced by a small number of normal human peripheral blood lymphocytes. J Exp Med 164:321–326

    Article  CAS  PubMed  Google Scholar 

  28. Lapin A, Bohmer F (2005) Laboratory diagnosis and geriatrics: more than just reference intervals for the elderly. Wien Med Wochenschr 155:30–35

    Article  PubMed  Google Scholar 

  29. Lee SH, Chan RC, Wu JY et al (2013) Diagnostic value of procalcitonin for bacterial infection in elderly patients - a systemic review and meta-analysis. Int J Clin Pract 67:1350–1357

    Article  PubMed  Google Scholar 

  30. Liu A, Bui T, Van Nguyen H et al (2010) Serum C-reactive protein as a biomarker for early detection of bacterial infection in the older patient. Age Ageing 39:559–565

    Article  PubMed  Google Scholar 

  31. Marnell LL, Mold C, Volzer MA et al (1995) C-reactive protein binds to Fc gamma RI in transfected COS cells. J Immunol 155:2185–2193

    CAS  PubMed  Google Scholar 

  32. Mold C, Gewurz H, Du Clos TW (1999) Regulation of complement activation by C-reactive protein. Immunopharmacology 42:23–30

    Article  CAS  PubMed  Google Scholar 

  33. Müller-Esterl W (2010) Biochemie - Eine Einführung für Mediziner und Naturwissenschaftler. Spektrum Akademischer Verlag, Heidelberg

  34. Ohl K, Tenbrock K (2011) Inflammatory cytokines in systemic lupus erythematosus. J Biomed Biotechnol 2011:432595

    Article  PubMed Central  PubMed  Google Scholar 

  35. Oliveira EB, Gotschlich EC, Liu TY (1977) Primary structure of human C-reactive protein. Proc Natl Acad Sci U S A 74:3148–3151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Opal SM, Girard TD, Ely EW (2005) The immunopathogenesis of sepsis in elderly patients. Clin Infect Dis 41(Suppl 7):S504–512

    Article  CAS  PubMed  Google Scholar 

  37. Pepys MB, Hirschfield GM (2003) C-reactive protein: a critical update. J Clin Invest 111:1805–1812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Pepys MB, Baltz M, Gomer K et al (1979) Serum amyloid P-component is an acute-phase reactant in the mouse. Nature 278:259–261

    Article  CAS  PubMed  Google Scholar 

  39. Pepys MB, Dash AC, Markham RE et al (1978) Comparative clinical study of protein SAP (amyloid P component) and C-reactive protein in serum. Clin Exp Immunol 32:119–124

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Rossol M, Heine H, Meusch U et al (2011) LPS-induced cytokine production in human monocytes and macrophages. Crit Rev Immunol 31:379–446

    Article  CAS  PubMed  Google Scholar 

  41. Shrivastava AK, Singh HV, Raizada A et al (2015) Inflammatory markers in patients with rheumatoid arthritis. Allergol Immunopathol (Madr) 43:81–87

    Article  CAS  Google Scholar 

  42. Shrive AK, Cheetham GM, Holden D et al (1996) Three dimensional structure of human C-reactive protein. Nat Struct Biol 3:346–354

    Article  CAS  PubMed  Google Scholar 

  43. Singler K, Bertsch T, Heppner HJ et al (2013) Diagnostic accuracy of three different methods of temperature measurement in acutely ill geriatric patients. Age Ageing 42:740–746

    Article  PubMed  Google Scholar 

  44. Stuart RA, Littlewood AJ, Maddison PJ et al (1995) Elevated serum interleukin-6 levels associated with active disease in systemic connective tissue disorders. Clin Exp Rheumatol 13:17–22

    CAS  PubMed  Google Scholar 

  45. Talebi-Taher M, Babazadeh S, Barati M et al (2014) Serum inflammatory markers in the elderly: are they useful in differentiating sepsis from SIRS? Acta Med Iran 52:438–442

    PubMed  Google Scholar 

  46. Tillett WS, Francis T (1930) Serological reactions in pneumonia with a non-protein somatic fraction of pneumococcus. J Exp Med 52:561–571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Tron K, Manolov DE, Rocker C et al (2008) C-reactive protein specifically binds to Fcgamma receptor type I on a macrophage-like cell line. Eur J Immunol 38:1414–1422

    Article  CAS  PubMed  Google Scholar 

  48. Vermeire S, Van Assche G, Rutgeerts P (2006) Laboratory markers in IBD: useful, magic, or unnecessary toys? Gut 55:426–431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Vigushin DM, Pepys MB, Hawkins PN (1993) Metabolic and scintigraphic studies of radioiodinated human C-reactive protein in health and disease. J Clin Invest 91:1351–1357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Volanakis JE (1982) Complement activation by C-reactive protein complexes. Ann N Y Acad Sci 389:235–250

    Article  CAS  PubMed  Google Scholar 

  51. Volanakis JE, Wirtz KW (1979) Interaction of C-reactive protein with artificial phosphatidylcholine bilayers. Nature 281:155–157

    Article  CAS  PubMed  Google Scholar 

  52. Walston J, Mcburnie MA, Newman A et al (2002) Frailty and activation of the inflammation and coagulation systems with and without clinical comorbidities: results from the Cardiovascular Health Study. Arch Intern Med 162:2333–2341

    Article  PubMed  Google Scholar 

  53. Wester AL, Blaasaas KG, Wyller TB (2008) Is the concentration of C-reactive protein in bacteraemia associated with age? Immun Ageing 5:8

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

The CRP image (Fig. 1) was kindly provided by Professor Trevor J. Greenhough.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bertsch.

Ethics declarations

Conflict of interest

T. Bertsch, J. Triebel, C. Bollheimer, M. Christ, C. Sieber, K. Fassbender and H.J. Heppner declare that there are no conflicts of interest.

This article does not contain any studies with human or animal subjects.

Additional information

Thomas Bertsch and Jakob Triebel contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertsch, T., Triebel, J., Bollheimer, C. et al. C-reactive protein and the acute phase reaction in geriatric patients. Z Gerontol Geriat 48, 595–600 (2015). https://doi.org/10.1007/s00391-015-0938-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00391-015-0938-4

Keywords

Schlüsselwörter

Navigation