Skip to main content

Advertisement

Log in

Decreased expression of hepatocyte growth factor in the nitrofen model of congenital diaphragmatic hernia

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

Pleuroperitoneal folds (PPFs) are essential for normal diaphragmatic development, representing the only source of the diaphragm’s muscle connective tissue. Hepatocyte growth factor (Hgf), which is secreted in PPFs, plays a crucial role in the formation of the muscular diaphragmatic components by regulating the migration of myogenic progenitor cells into the primordial diaphragm. Hgf is also a known downstream target of Gata4 and it has been demonstrated that the expression of Hgf was significantly downregulated in PPF cells of Gata4 knockouts with congenital diaphragmatic hernia (CDH). Furthermore, mutations in PPF-derived cells have been shown to result in CDH. We hypothesized that Hgf expression is decreased in developing diaphragms of fetal rats with nitrofen-induced CDH.

Methods

Timed-pregnant rats were exposed to either nitrofen or vehicle on gestational day 9 (D9). Fetuses were harvested on selected time-points D13, D15 and D18. Dissected diaphragms (n = 72) were divided into control and nitrofen-exposed specimens (n = 12 per time-point and experimental group, respectively). Diaphragmatic gene expression of Hgf was analyzed by qRT-PCR. Immunofluorescence double staining for Hgf and the mesenchymal marker Gata4 or muscular progenitor marker Myogenin was performed to evaluate protein expression and localization in fetal diaphragms.

Results

Relative mRNA expression of Hgf was significantly downregulated in PPFs of nitrofen-exposed fetuses on D13 (3.08 ± 1.46 vs. 5.24 ± 1.93; p < 0.05), developing diaphragms of nitrofen-exposed fetuses on D15 (2.01 ± 0.79 vs. 4.10 ± 1.50; p < 0.05) and fully muscularized diaphragms of nitrofen-exposed fetuses on D18 (1.60 ± 0.78 vs. 3.21 ± 1.89; p < 0.05) compared to controls. Confocal laser scanning microscopy revealed markedly diminished diaphragmatic immunofluorescence of Hgf in nitrofen-exposed fetuses on D13, D15 and D18 compared to controls, which was associated with disruptions in muscle connective tissue formation and reduced myogenic progenitor cell invasion.

Conclusion

Decreased diaphragmatic expression of Hgf may disturb the formation of muscle connective tissue in PPFs and thus prevent essential migration of muscle progenitor cells into the developing diaphragm, leading to diaphragmatic defects in the nitrofen CDH model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. McHoney M (2015) Congenital diaphragmatic hernia, management in the newborn. Pediatr Surg Int 31(11):1005–1013

    Article  PubMed  Google Scholar 

  2. Jeanty C, Kunisaki SM, MacKenzie TC (2014) Novel non-surgical prenatal approaches to treating congenital diaphragmatic hernia. Semin Fetal Neonatal Med 19(6):349–356

    Article  PubMed  Google Scholar 

  3. Losty PD (2014) Congenital diaphragmatic hernia: where and what is the evidence? Semin Pediatr Surg 23(5):278–282

    Article  PubMed  Google Scholar 

  4. McGivern MR, Best KE, Rankin J, Wellesley D, Greenlees R, Addor MC, Arriola L, de Walle H, Barisic I, Beres J, Bianchi F, Calzolari E, Doray B, Draper ES, Garne E, Gatt M, Haeusler M, Khoshnood B, Klungsoyr K, Latos-Bielenska A, O’Mahony M, Braz P, McDonnell B, Mullaney C, Nelen V, Queisser-Luft A, Randrianaivo H, Rissmann A, Rounding C, Sipek A, Thompson R, Tucker D, Wertelecki W, Martos C (2015) Epidemiology of congenital diaphragmatic hernia in Europe: a register-based study. Arch Dis Child Fetal Neonatal Ed 100(2):F137–F144

    Article  PubMed  Google Scholar 

  5. Balayla J, Abenhaim HA (2014) Incidence, predictors and outcomes of congenital diaphragmatic hernia: a population-based study of 32 million births in the United States. J Matern Fetal Neonatal Med 27(14):1438–1444

    Article  PubMed  Google Scholar 

  6. Tovar JA (2012) Congenital diaphragmatic hernia. Orphanet J Rare Dis 7:1

    Article  PubMed  PubMed Central  Google Scholar 

  7. Keijzer R, Puri P (2010) Congenital diaphragmatic hernia. Semin Pediatr Surg 19(3):180–185

    Article  PubMed  Google Scholar 

  8. Clugston RD, Klattig J, Englert C, Clagett-Dame M, Martinovic J, Benachi A, Greer JJ (2006) Teratogen-induced, dietary and genetic models of congenital diaphragmatic hernia share a common mechanism of pathogenesis. Am J Pathol 169(5):1541–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Merrell AJ, Ellis BJ, Fox ZD, Lawson JA, Weiss JA, Kardon G (2015) Muscle connective tissue controls development of the diaphragm and is a source of congenital diaphragmatic hernias. Nat Genet 47(5):496–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Babiuk RP, Zhang W, Clugston R, Allan DW, Greer JJ (2003) Embryological origins and development of the rat diaphragm. J Comp Neurol 455(4):477–487

    Article  PubMed  Google Scholar 

  11. Greer JJ (2013) Current concepts on the pathogenesis and etiology of congenital diaphragmatic hernia. Respir Physiol Neurobiol 189(2):232–240

    Article  PubMed  Google Scholar 

  12. Dietrich S, Abou-Rebyeh F, Brohmann H, Bladt F, Sonnenberg-Riethmacher E, Yamaai T, Lumsden A, Brand-Saberi B, Birchmeier C (1999) The role of SF/HGF and c-Met in the development of skeletal muscle. Development 126(8):1621–1629

    CAS  PubMed  Google Scholar 

  13. Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C (1995) Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376(6543):768–771

    Article  CAS  PubMed  Google Scholar 

  14. Maina F, Casagranda F, Audero E, Simeone A, Comoglio PM, Klein R, Ponzetto C (1996) Uncoupling of Grb2 from the Met receptor in vivo reveals complex roles in muscle development. Cell 87(3):531–542

    Article  CAS  PubMed  Google Scholar 

  15. Eastwood MP, Russo FM, Toelen J, Deprest J (2015) Medical interventions to reverse pulmonary hypoplasia in the animal model of congenital diaphragmatic hernia: a systematic review. Pediatr Pulmonol 50(8):820–838

    Article  PubMed  Google Scholar 

  16. Montedonico S, Nakazawa N, Puri P (2008) Congenital diaphragmatic hernia and retinoids: searching for an etiology. Pediatr Surg Int 24(7):755–761

    Article  PubMed  PubMed Central  Google Scholar 

  17. Noble BR, Babiuk RP, Clugston RD, Underhill TM, Sun H, Kawaguchi R, Walfish PG, Blomhoff R, Gundersen TE, Greer JJ (2007) Mechanisms of action of the congenital diaphragmatic hernia-inducing teratogen nitrofen. Am J Physiol Lung Cell Mol Physiol 293(4):L1079–L1087

    Article  CAS  PubMed  Google Scholar 

  18. Merrell AJ, Kardon G (2013) Development of the diaphragm—a skeletal muscle essential for mammalian respiration. FEBS J 280(17):4026–4035

    Article  CAS  PubMed  Google Scholar 

  19. Clugston RD, Greer JJ (2007) Diaphragm development and congenital diaphragmatic hernia. Semin Pediatr Surg 16(2):94–100

    Article  PubMed  Google Scholar 

  20. Mayer S, Metzger R, Kluth D (2011) The embryology of the diaphragm. Semin Pediatr Surg 20(3):161–169

    Article  PubMed  Google Scholar 

  21. Babiuk RP, Greer JJ (2002) Diaphragm defects occur in a CDH hernia model independently of myogenesis and lung formation. Am J Physiol Lung Cell Mol Physiol 283(6):L1310–L1314

    Article  CAS  PubMed  Google Scholar 

  22. Clugston RD, Zhang W, Greer JJ (2010) Early development of the primordial mammalian diaphragm and cellular mechanisms of nitrofen-induced congenital diaphragmatic hernia. Birth Defects Res A Clin Mol Teratol 88(1):15–24

    CAS  PubMed  Google Scholar 

  23. Arrington CB, Bleyl SB, Matsunami N, Bowles NE, Leppert TI, Demarest BL, Osborne K, Yoder BA, Byrne JL, Schiffman JD, Null DM, DiGeronimo R, Rollins M, Faix R, Comstock J, Camp NJ, Leppert MF, Yost HJ, Brunelli L (2012) A family-based paradigm to identify candidate chromosomal regions for isolated congenital diaphragmatic hernia. Am J Med Genet A 158A(12):3137–3147

    Article  PubMed  PubMed Central  Google Scholar 

  24. Longoni M, Lage K, Russell MK, Loscertales M, Abdul-Rahman OA, Baynam G, Bleyl SB, Brady PD, Breckpot J, Chen CP, Devriendt K, Gillessen-Kaesbach G, Grix AW, Rope AF, Shimokawa O, Strauss B, Wieczorek D, Zackai EH, Coletti CM, Maalouf FI, Noonan KM, Park JH, Tracy AA, Lee C, Donahoe PK, Pober BR (2012) Congenital diaphragmatic hernia interval on chromosome 8p23.1 characterized by genetics and protein interaction networks. Am J Med Genet A 158A(12):3148–3158

    Article  PubMed  Google Scholar 

  25. Yu L, Wynn J, Cheung YH, Shen Y, Mychaliska GB, Crombleholme TM, Azarow KS, Lim FY, Chung DH, Potoka D, Warner BW, Bucher B, Stolar C, Aspelund G, Arkovitz MS, Chung WK (2013) Variants in GATA4 are a rare cause of familial and sporadic congenital diaphragmatic hernia. Hum Genet 132(3):285–292

    Article  CAS  PubMed  Google Scholar 

  26. Jay PY, Bielinska M, Erlich JM, Mannisto S, Pu WT, Heikinheimo M, Wilson DB (2007) Impaired mesenchymal cell function in Gata4 mutant mice leads to diaphragmatic hernias and primary lung defects. Dev Biol 301(2):602–614

    Article  CAS  PubMed  Google Scholar 

  27. Clugston RD, Zhang W, Greer JJ (2008) Gene expression in the developing diaphragm: significance for congenital diaphragmatic hernia. Am J Physiol Lung Cell Mol Physiol 294(4):L665–L675

    Article  CAS  PubMed  Google Scholar 

  28. Dingemann J, Doi T, Gosemann JH, Ruttenstock EM, Nakazawa N, Puri P (2013) Decreased expression of GATA4 in the diaphragm of nitrofen-induced congenital diaphragmatic hernia. Birth Defects Res B Dev Reprod Toxicol 98 (2):139–143

  29. Gosemann JH, Doi T, Kutasy B, Friedmacher F, Dingemann J, Puri P (2012) Pax3 gene expression is not altered during diaphragmatic development in nitrofen-induced congenital diaphragmatic hernia. J Pediatr Surg 47(6):1067–1071

  30. Dingemann J, Doi T, Ruttenstock E, Puri P (2011) The role of primary myogenic regulatory factors in the developing diaphragmatic muscle in the nitrofen-induced diaphragmatic hernia. Pediatr Surg Int 27 (6):579–582

  31. Takahashi T, Friedmacher F, Takahashi H, Hofmann AD, Puri P (2014) Myogenin gene expression is not altered in the developing diaphragm of nitrofen-induced congenital diaphragmatic hernia. Pediatr Surg Int 30(9):901–906

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem Puri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This research was supported by the National Children’s Research Centre and the Children’s Medical and Research Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, T., Friedmacher, F., Zimmer, J. et al. Decreased expression of hepatocyte growth factor in the nitrofen model of congenital diaphragmatic hernia. Pediatr Surg Int 32, 967–973 (2016). https://doi.org/10.1007/s00383-016-3944-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-016-3944-8

Keywords

Navigation