Skip to main content
Log in

Does pneumoperitoneum adversely affect growth, development and liver function in biliary atresia patients after laparoscopic portoenterostomy?

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

We assessed the effect of high partial pressure of arterial carbon dioxide (PaCO2) due to pneumoperitoneum (PP) on growth (height/weight) and development (gross/fine motor function, receptive/expressive communication, and social interaction), by comparing outcome after portoenterostomy (PE) for biliary atresia (BA) using laparoscopic PE (LPE: n = 13) and open PE (OPE: n = 13) cases performed between 2005 and 2014.

Methods

Our PE is based on Kasai’s original PE. All data were collated prospectively.

Results

Differences in duration of follow-up (LPE: 38.8 months; OPE: 38.1 months), jaundice clearance (LPE: 12/13 = 92.3 %; OPE: 9/13 = 69.2 %), survival with the native liver (LPE: 10/13 = 76.9 %; OPE: 9/13 = 69.2 %), incidence of cholangitis, hypersplenism, and incidence of esophageal varices were not significant. Mean intraoperative PaCO2 was significantly higher in LPE (LPE: 50.1 mmHg; OPE: 40.7 mmHg, p < 0.05). Liver function impairment was not statistically different, although LPE results were slightly worse. There was no overall delay in growth observed, although height/weight gain was more consistent in LPE. The pattern of developmental delay observed was similar for LPE and OPE suggesting that developmental delay is not PE-related; in other words, PP is not implicated in developmental delay.

Conclusions

PP during LPE would appear to have no adverse effects on overall growth/development and liver function in BA patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Laje P, Clark FH, Friedman JR et al (2010) Increased susceptibility to liver damage from pneumoperitoneum in a murine model of biliary atresia. J Pediatr Surg 45:1791–1796

    Article  PubMed  Google Scholar 

  2. Ure BM, Kuebler JF, Schukfeh N et al (2011) Survival with the native liver after laparoscopic versus conventional Kasai portoenterostomy in infants with biliary atresia: a prospective trial. Ann Surg 253:826–830

    Article  PubMed  Google Scholar 

  3. Tan M, Xu FF, Peng JS et al (2003) Changes in the level of serum liver enzymes after laparoscopic surgery. World J Gastroenterol 9:364–367

    CAS  PubMed  Google Scholar 

  4. Saber AA, Laraja RD, Nalbandian HI et al (2000) Changes in liver function tests after laparoscopic cholecystectomy: not so rare, not always ominous. Am Surg 66:699–702

    CAS  PubMed  Google Scholar 

  5. Nguyen NT, Braley S, Fleming NW et al (2003) Comparison of postoperative hepatic function after laparoscopic versus open gastric bypass. Am J Surg 186:40–44

    Article  PubMed  Google Scholar 

  6. Morino M, Giraudo G, Festa V (1998) Alterations in hepatic function during laparoscopic surgery. An experimental clinical study. Surg Endosc 12:968–972

    Article  CAS  PubMed  Google Scholar 

  7. Guven HE, Oral S (2007) Liver enzyme alterations after laparoscopic cholecystectomy. J Gastrointestin Liver Dis 16:391–394

    PubMed  Google Scholar 

  8. Sahin DA, Haliloglu B, Sahin FK et al (2007) Stepwise rising CO2 insufflation as an ischemic preconditioning method. J Lap Surg Tech 17:726–729

    Google Scholar 

  9. Bickel A, Drobot A, Aviram M et al (2007) Validation and reduction of the oxidative stress following laparoscopic operations: a prospective randomized controlled study. Ann Surg 246:31–35

    Article  PubMed Central  PubMed  Google Scholar 

  10. Jaeschke H, Lemasters JJ (2003) Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury. Gastroenterology 125:1246–1257

    Article  CAS  PubMed  Google Scholar 

  11. Mogilner JG, Bitterman H, Hayari L et al (2008) Effect of elevated intra-abdominal pressure and hyperoxia on portal vein blood flow, hepatocyte proliferation and apoptosis in a rat model. Eur J Pediatr Surg 18:380–386

    Article  CAS  PubMed  Google Scholar 

  12. Jesch NK, Vieten G, Tschering T et al (2005) Mini-laparotomy and full laparotomy but not laparoscopy alter hepatic macrophage populations in a rat model. Surg Endosc 19:804–810

    Article  CAS  PubMed  Google Scholar 

  13. Kuebler JF, Kos M, Jesch NK et al (2007) Carbon dioxide suppresses macrophage superoxide anion production independent of extracellular pH and mitochondrial activity. J Pediatr Surg 42:244–248

    Article  PubMed  Google Scholar 

  14. Shimotakahara A, Kuebler JF, Vieten G et al (2008) Carbon dioxide directly suppresses spontaneous migration, chemotaxis, and free radical production of human neutrophils. Surg Endosc 22:1813–1817

    Article  PubMed  Google Scholar 

  15. Nakamura Y (2010) Maternal and child health handbook in Japan. Jpn Med Assoc J 53:259–265

    Google Scholar 

  16. Wada M, Nakamura H, Koga H et al (2014) Experience of treating biliary atresia with three types of portoenterostomy at a single institution: extended, modified Kasai, and laparoscopic modified Kasai. Pediatr Surg Int 30:863–870

    Article  PubMed  Google Scholar 

  17. Kasai M (1974) Treatment of biliary atresia with special reference to hepatic portoenterostomy and its modification. Prog Pediatr Surg 6:5–52

    CAS  PubMed  Google Scholar 

  18. Nakamura H, Koga H, Wada M et al (2012) Reappraising the portoenterostomy procedure according to sound physiologic/anatomic principles enhances postoperative jaundice clearance in biliary atresia. Pediatr Surg Int 28:205–209

    Article  PubMed  Google Scholar 

  19. Davenport M (2012) Biliary atresia: clinical aspects. Semin Pediatr Surg 21:175–184

    Article  PubMed  Google Scholar 

  20. Aspelund G, Ling SC, Ng V et al (2007) A role for laparoscopic approach in the treatment of biliary atresia and choledochal cysts. J Pediatr Surg 42:869–872

    Article  PubMed  Google Scholar 

  21. Esteves E, Clemente Neto E, Ottaiano Neto M et al (2002) Laparoscopic Kasai portoenterostomy for biliary atresia. Pediatr Surg Int 18:737–740

    PubMed  Google Scholar 

  22. Lee H, Hirose S, Bratton B et al (2004) Initial experience with complex laparoscopic biliary surgery in children: biliary atresia and choledochal cyst. J Pediatr Surg 39:804–807

    Article  PubMed  Google Scholar 

  23. Martinez-Ferro M, Esteves E, Laje P (2005) Laparoscopic treatment of biliary atresia and choledochal cyst. Semin Pediatr Surg 14:206–215

    Article  PubMed  Google Scholar 

  24. Koga H, Miyano G, Takahashi T et al (2011) Laparoscopic portoenterostomy for uncorrectable biliary atresia using Kasai’s original technique. J Laparoendosc Adv Surg Tech A 21:291–294

    Article  PubMed  Google Scholar 

  25. Yamataka A, Lane GJ, Cazares J (2012) Laparoscopic surgery for biliary atresia and choledochal cyst. Semin Pediatr Surg 21:201–210

    Article  PubMed  Google Scholar 

  26. Chan KW, Lee KH, Mou JW et al (2011) The outcome of laparoscopic portoenterostomy for biliary atresia in children. Pediatr Surg Int 27:671–674

    Article  PubMed  Google Scholar 

  27. Chan KW, Lee KH, Wong HY et al (2014) From laparoscopic to open Kasai portoenterostomy: the outcome after reintroduction of open Kasai portoenterostomy in infant with biliary atresia. Pediatr Surg Int 30:605–608

    Article  PubMed  Google Scholar 

  28. Sefr R, Puszkailer K, Jagos F (2003) Randomized trial of different intraabdominal pressures and acid-base balance alterations during laparoscopic cholecystectomy. Surg Endosc 17:947–950

    Article  CAS  PubMed  Google Scholar 

  29. Koivusalo AM, Kellokumpu I, Ristkari S et al (1997) Splanchnic and renal deterioration during and after laparoscopic cholecystectomy: a comparison of the carbon dioxide pneumoperitoneum and the abdominal wall lift method. Anesth Analg 85:886–891

    CAS  PubMed  Google Scholar 

  30. Galizia G, Prizio G, Lieto E et al (2001) Hemodynamic and pulmonary changes during open, carbon dioxide pneumoperitoneum and abdominal wall-lifting cholecystectomy. A prospective, randomized study. Surg Endosc 15:477–483

    Article  CAS  PubMed  Google Scholar 

  31. Ure BM, Suempelmann R, Metzelder MM et al (2007) Physiological responses to endoscopic surgery in children. Semin Pediatr Surg 16:217–223

    Article  PubMed  Google Scholar 

  32. Richter S, Olinger A, Hildebrandt U et al (2001) Loss of physiologic hepatic blood flow control (“hepatic arterial buffer response”) during CO2-pneumoperitoneum in the rat. Anesth Analg 93:872–877

    Article  CAS  PubMed  Google Scholar 

  33. Kirsch AJ, Hensle TW, Chang DT et al (1994) Renal effects of CO2 insufflation: oliguria and acute renal dysfunction in a rat pneumoperitoneum model. Urology 43:453–459

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuyuki Yamataka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, H., Koga, H., Okazaki, T. et al. Does pneumoperitoneum adversely affect growth, development and liver function in biliary atresia patients after laparoscopic portoenterostomy?. Pediatr Surg Int 31, 45–51 (2015). https://doi.org/10.1007/s00383-014-3625-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-014-3625-4

Keywords

Navigation