Skip to main content
Log in

The soluble guanylyl cyclase activator BAY 60-2770 potently relaxes the pulmonary artery on congenital diaphragmatic hernia rabbit model

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

Congenital diaphragmatic hernia (CDH) is associated with pulmonary hypertension which is often difficult to manage, and a significant cause of morbidity and mortality. In this study, we have used a rabbit model of CDH to evaluate the effects of BAY 60-2770 on the in vitro reactivity of left pulmonary artery.

Methods

CDH was performed in New Zealand rabbit fetuses (n = 10 per group) and compared to controls. Measurements of body, total and left lung weights (BW, TLW, LLW) were done. Pulmonary artery rings were pre-contracted with phenylephrine (10 μM), after which cumulative concentration–response curves to glyceryl trinitrate (GTN; NO donor), tadalafil (PDE5 inhibitor) and BAY 60-2770 (sGC activator) were obtained as well as the levels of NO (NO3/NO2).

Results

LLW, TLW and LBR were decreased in CDH (p < 0.05). In left pulmonary artery, the potency (pEC50) for GTN was markedly lower in CDH (8.25 ± 0.02 versus 9.27 ± 0.03; p < 0.01). In contrast, the potency for BAY 60-2770 was markedly greater in CDH (11.7 ± 0.03 versus 10.5 ± 0.06; p < 0.01). The NO2/NO3 levels were 62 % higher in CDH (p < 0.05).

Conclusion

BAY 60-2770 exhibits a greater potency to relax the pulmonary artery in CDH, indicating a potential use for pulmonary hypertension in this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hedrick HL (2010) Management of prenatally diagnosed congenital diaphragmatic hernia. Semin Fetal Neonatal Med 15:21–27. doi:10.1016/j.siny.2009.07.012

    Article  PubMed  Google Scholar 

  2. van den Hout L, Schaible T, Cohen-Overbeek TE et al (2011) Actual outcome in infants with congenital diaphragmatic hernia: the role of a standardized postnatal treatment protocol. Fetal Diagn Ther 29:55–63. doi:10.1159/000322694

    Article  PubMed  Google Scholar 

  3. Tracy ET, Mears SE, Smith PB et al (2010) Protocolized approach to the management of congenital diaphragmatic hernia: benefits of reducing variability in care. J Pediatr Surg 45:1343–1348. doi:10.1016/j.jpedsurg.2010.02.104

    Article  PubMed  PubMed Central  Google Scholar 

  4. Levin DL (1978) Morphologic analysis of the pulmonary vascular bed in congenital left-sided diaphragmatic hernia. J Pediatr 92:805–809

    Article  PubMed  CAS  Google Scholar 

  5. Shochat SJ, Naeye RL, Ford WD et al (1979) Congenital diaphragmatic hernia. New concept in management. Ann Surg 190:332–341

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Noori S, Friedlich P, Wong P et al (2007) Cardiovascular effects of sildenafil in neonates and infants with congenital diaphragmatic hernia and pulmonary hypertension. Neonatology 91:92–100. doi:10.1159/000097125

    Article  PubMed  CAS  Google Scholar 

  7. Koesling D, Friebe A (1999) Soluble guanylyl cyclase: structure and regulation. Rev Physiol Biochem Pharmacol 135:41–65. doi:10.1007/BFb0033669

    Article  PubMed  CAS  Google Scholar 

  8. Stasch JP, Hobbs AJ (2009) NO-independent, haem-dependent soluble guanylate cyclase stimulators. Handb Exp Pharmacol 191:277–308. doi:10.1007/978-3-540-68964-5_13

    Article  PubMed  CAS  Google Scholar 

  9. Evgenov OV, Pacher P, Schmidt PM et al (2006) NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nat Rev Drug Discov 5:755–768. doi:10.1038/nrd2038

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Stasch JP, Becker EM, Alonso-Alija C et al (2001) NO-independent regulatory site on soluble guanylate cyclase. Nature 410:212–215. doi:10.1038/35065611

    Article  PubMed  CAS  Google Scholar 

  11. Priviero FB, Baracat JS, Teixeira CE et al (2005) Mechanisms underlying relaxation of rabbit aorta by BAY 41-2272, a nitric oxide-independent soluble guanylate cyclase activator. Clin Exp Pharmacol Physiol 32:728–734. doi:10.1111/j.1440-1681.2005.04262.x

    Article  PubMed  CAS  Google Scholar 

  12. Cau SB, Dias-Junior CA, Montenegro MF et al (2008) Dose-dependent beneficial hemodynamic effects of BAY 41-2272 in a canine model of acute pulmonary thromboembolism. Eur J Pharmacol 58:132–137. doi:10.1016/j.ejphar.2007.11.030

    Article  Google Scholar 

  13. Stasch JP, Evgenov OV (2013) Soluble guanylate cyclase stimulators in pulmonary hypertension. Handb Exp Pharmacol 218:279–313. doi:10.1007/978-3-642-38664-0_12

    Article  PubMed  Google Scholar 

  14. Stasch JP, Schmidt PM, Nedvetsky PI et al (2006) Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels. J Clin Invest 116:2552–2561. doi:10.1172/JCI28371

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Dumitrascu R, Weissmann N, Ghofrani HA et al (2006) Activation of soluble guanylate cyclase reverses experimental pulmonary hypertension and vascular remodeling. Circulation 113:286–295. doi:10.1161/CIRCULATIONAHA.105.581405

    Article  PubMed  CAS  Google Scholar 

  16. Chester M, Tourneux P, Seedorf G et al (2009) Cinaciguat, a soluble guanylate cyclase activator, causes potent and sustained pulmonary vasodilation in the ovine fetus. Am J Physiol Lung Cell Mol Physiol 297:L318–L325. doi:10.1152/ajplung.00062.2009

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Pankey EA, Bhartiya M, Badejo AM Jr et al (2011) Pulmonary and systemic vasodilator responses to the soluble guanylyl cyclase activator, BAY 60-2770, are not dependent on endogenous nitric oxide or reduced heme. Am J Physiol Heart Circ Physiol 300:H792–H802. doi:10.1152/ajpheart.00953.2010

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Fauza DO, Tannuri U, Ayoub AA et al (1994) Surgically produced congenital diaphragmatic hernia in fetal rabbits. J Pediatr Surg 29:882–886

    Article  PubMed  CAS  Google Scholar 

  19. Schmidt AF, Rojas-Moscoso JA, Gonçalves FL et al (2013) Increased contractility and impaired relaxation of the left pulmonary artery in a rabbit model of congenital diaphragmatic hernia. Pediatr Surg Int 29:489–494. doi:10.1007/s00383-012-3238-8

    Article  PubMed  Google Scholar 

  20. Tracy ET, Mears SE, Smith PB et al (2010) Protocolized approach to the management of congenital diaphragmatic hernia: benefits of reducing variability in care. J Pediatr Surg 45:1343–1348. doi:10.1016/j.jpedsurg.2010.02.104

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cortes RA, Keller RL, Townsend T et al (2005) Survival of severe congenital diaphragmatic hernia has morbid consequences. J Pediatr Surg 40:36–45. doi:10.1016/j.jpedsurg.2004.09.037

    Article  PubMed  Google Scholar 

  22. The Neonatal Inhaled Nitric Oxide Study Group (1997) Inhaled nitric oxide in full-term and nearly full-term infants with hypoxic respiratory failure. N Engl J Med 336:597–604. doi:10.1056/NEJM19970227336090

    Article  Google Scholar 

  23. The Neonatal Inhaled Nitric Oxide Study Group (1997) Inhaled nitric oxide and hypoxic respiratory failure in infants with congenital diaphragmatic hernia. Pediatrics 99:838–845. doi:10.1542/peds.99.6.838

    Article  Google Scholar 

  24. Goldman AP, Tasker RC, Hosiasson S et al (1997) Early response to inhaled nitric oxide and its relationship to outcome in children with severe hypoxemic respiratory failure. Chest 112:752–758. doi:10.1378/chest.112.3.752

    Article  PubMed  CAS  Google Scholar 

  25. Mendes-Silverio CB, Leiria LO, Morganti RP et al (2012) Activation of haem-oxidized soluble guanylyl cyclase with BAY 60-2770 in human platelets lead to overstimulation of the cyclic GMP signaling pathway. PLoS One 7:e47223. doi:10.1371/journal.pone.0047223

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Jones AW, Durante WJ, Korthuis RJ (2010) Heme oxygenase-1 deficiency leads to alteration of soluble guanylate cyclase redox regulation. J Pharmacol Exp Ther 335:85–91. doi:10.1124/jpet.110.169755

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. van Loenhout RB, Tibboel D, Post M et al (2009) Congenital diaphragmatic hernia: comparison of animal models and relevance to the human situation. Neonatology 96:137–149. doi:10.1159/000209850

    Article  PubMed  Google Scholar 

  28. Wang PG, Xian M, Tang X et al (2002) Nitric oxide donors: chemical activities and biological applications. Chem Rev 102:1091–1134. doi:10.1021/cr000040l

    Article  PubMed  CAS  Google Scholar 

  29. Luong C, Rey-Perra J, Vadivel A et al (2011) Antenatal sildenafil treatment attenuates pulmonary hypertension in experimental congenital diaphragmatic hernia. Circulation 123:2120–2131. doi:10.1161/CIRCULATIONAHA.108.845909

    Article  PubMed  CAS  Google Scholar 

  30. Aktan F (2004) iNOS-mediated nitric oxide production and its regulation. Life Sci 75:639–653. doi:10.1016/j.lfs.2003.10.042

    Article  PubMed  CAS  Google Scholar 

  31. Paravicini TM, Touyz RM et al (2008) NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care 31:S170–S180. doi:10.2337/dc08-s247

    Article  PubMed  CAS  Google Scholar 

  32. Sayed N, Baskaran P, Ma X et al (2007) Desensitization of soluble guanylyl cyclase, the NO receptor, by S-nitrosylation. Proc Natl Acad Sci USA 104:12312–12317. doi:10.1073/pnas.0703944104

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

Grant #471496/2011-1- the National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lourenço Sbragia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas-Moscoso, J.A., Antunes, E., Figueira, R.R. et al. The soluble guanylyl cyclase activator BAY 60-2770 potently relaxes the pulmonary artery on congenital diaphragmatic hernia rabbit model. Pediatr Surg Int 30, 1031–1036 (2014). https://doi.org/10.1007/s00383-014-3561-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-014-3561-3

Keywords

Navigation