Skip to main content

Advertisement

Log in

Conditional impact of boreal autumn North Atlantic SST anomaly on winter tropospheric Asian polar vortex

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study investigates the relationship between the North Atlantic sea surface temperature (NASST) in autumn (September–October–November, SON) and the tropospheric Asian polar vortex (APV) in the following winter (December–January–February, DJF). The results show that the SON SST anomaly over the mid-latitude North Atlantic conditionally provides a valuable source for the prediction of the DJF APV’s interannual variability. When the SON NASST anomaly can persist into DJF, there is a practical prediction of the DJF APV. Physical diagnosis indicates that the presence/absence of an active air–sea interaction determines whether the SON SST anomaly signals could be maintained to DJF. During the years when the SON NASST anomaly is well sustained, the SST anomaly could efficiently heat the air column above. The resultant atmospheric circulation anomalies, in turn, change the low-level climatological winds and induce anomalous turbulent heat flux, which further exerts impacts on the NASST anomaly, resulting in a similar SST anomaly pattern with the pronounced NASST anomaly. Therefore, the resultant atmospheric circulation anomalies provide positive feedback to the anomalous SST and favor the persistence of the SST anomaly. In DJF, the NASST anomaly can excite a wave train pattern to influence the APV. However, during the poorly sustained years, the air–sea interaction over the North Atlantic is weak, and the SST anomaly can hardly influence the overlying air column. Without the positive air–sea feedback, the SON NASST anomaly cannot persist into DJF and cannot affect the DJF APV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The JRA-55 reanalysis data can be accessed from https://jra.kishou.go.jp/JRA-55/index_en.html#download. The HadISST data can be accessed from https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html. The CRU TS (v4.03) can be accessed from https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.03/cruts.1905011326.v4.03/tmp/. The OAflux data can be accessed from https://oaflux.whoi.edu/.

Code availability

All the codes are programmed by NCAR Command Language (NCL, version 6.5). The codes are available and maintained by Yu S. (yushui@mail.iap.ac.cn).

References

  • Angell JK (1998) Contraction of the 300 mbar north circumpolar vortex during 1963–1997 and its movement into the eastern Hemisphere. J Geophys Res 103:25887–25893

    Article  Google Scholar 

  • Angell JK, Korshover J (1977) Variation in size and location of the 300 mb North circumpolar vortex between 1963 and 1975. Mon Weather Rev 105:19–25

    Article  Google Scholar 

  • Burnett AW (1993) Size variations and long-wave circulation within the January Northern Hemisphere circumpolar vortex: 1946–89. J Clim 6:1914–1920

    Article  Google Scholar 

  • Cellitti MP, Walsh JE, Rauber RM, Portis DH (2006) Extreme cold air outbreaks over the United States, the polar vortex, and the large-scale circulation. J Geophys Res 111:D02114. https://doi.org/10.1029/2005JD006273

    Article  Google Scholar 

  • Coëtlogon GD, Frankignoul C (2003) The persistence of winter sea surface temperature in the North Atlantic. J Clim 16:1364–1377

    Article  Google Scholar 

  • Cohen J, Entekhabi D (2001) The influence of snow cover on Northern Hemisphere climate variability. Atmos Ocean 39:35–53

    Article  Google Scholar 

  • Czaja A, Frankignoul C (2002) Observed impact of atlantic SST anomalies on the North Atlantic oscillation. J Clim 15:606–623

    Article  Google Scholar 

  • Davis RE, Benkovic SR (1992) Climatological variations in the Northern Hemisphere circumpolar vortex in January. Theoret Appl Climatol 46:63–73

    Article  Google Scholar 

  • Davis RE, Benkovic SR (1994) Spatial and temporal variations of the January circumpolar vortex over the Northern Hemisphere. Int J Climatol 14:415–428

    Article  Google Scholar 

  • Deser C, Tomas RA, Peng SL (2007) The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J Clim 20:4751–4767. https://doi.org/10.1175/JCLI4278.1

    Article  Google Scholar 

  • Drévillon M, Terray L, Rogel P, Cassou C (2001) Mid latitude Atlantic SST influence on European winter climate variability in the NCEP reanalysis. Clim Dyn 18:331–344

    Article  Google Scholar 

  • Ferreira D, Frankignoul C (2005) The transient atmospheric response to midlatitude SST anomalies. J Clim 18:1049–1067

    Article  Google Scholar 

  • Ferreira D, Frankignoul C (2008) Transient atmospheric response to interactive SST anomalies. J Clim 21:576–583. https://doi.org/10.1175/2007JCLI1704.1

    Article  Google Scholar 

  • Frauenfeld OW, Davis RE (2003) Northern Hemisphere circumpolar vortex trends and climate change implications. J Geophys Res 108(D14):4423. https://doi.org/10.1029/2002JD002958

    Article  Google Scholar 

  • Gardner AS, Sharp M (2007) Influence of the Arctic circumpolar vortex on the mass balance of Canadian High Artic glaciers. J Clim 20:4586–4598. https://doi.org/10.1175/JCLI4268.1

    Article  Google Scholar 

  • Gastineau G, D’Andrea F, Frankignoul C (2013) Atmospheric response to the North Atlantic Ocean variability on seasonal to decadal time scales. Clim Dyn 40:2311–2330. https://doi.org/10.1007/s00382-012-1333-0

    Article  Google Scholar 

  • Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR et al (2011) The community climate system model version 4. J Clim 24:4973–4991

    Article  Google Scholar 

  • Gong SL, Zhang XY, Zhao TL, Zhang XB, Barrie LA, McKendry IG, Zhao CS (2006) A simulated climatology of Asian dust aerosol and its trans-Pacific transport. Part II: interannual variability and climate connections. J Clim 19:104–122

    Article  Google Scholar 

  • Han TT, He SP, Hao X, Wang HJ (2018) Recent interdecadal shift in the relationship between Northeast China’s winter precipitation and the North Atlantic and Indian oceans. Clim Dyn 50:1413–1424. https://doi.org/10.1007/s00382-017-3694-x

    Article  Google Scholar 

  • Hara Y, Uno I, Wang ZF (2006) Long-term variation of Asian dust and related climate factors. Atmos Environ 40:6730–6740. https://doi.org/10.1016/j.atmosenv.2006.05.080

    Article  Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations-the CRU TS3.10 dataset. Int J Climatol 34:623–642. https://doi.org/10.1002/joc.3711

    Article  Google Scholar 

  • Hatzaki M, Wu RG (2015) The south-eastern Europe winter precipitation variability in relation to the North Atlantic SST. Atmos Res 152:61–68. https://doi.org/10.1016/j.atmosres.2013.10.008

    Article  Google Scholar 

  • He SP, Wang HJ, Gao YQ, Li F (2019) Recent intensified impact of December Arctic oscillation on subsequent January temperature in Eurasia and North Africa. Clim Dyn 52:1077–1094. https://doi.org/10.1007/s00382-018-4182-7

    Article  Google Scholar 

  • Jung O, Sung M-K, Sato K, Lim Y-K, Kim S-J, Baek E-H et al (2017) How does the SST variability over the western North Atlantic Ocean control arctic over the Barents-Kara seas? Environ Res Lett 12:034021. https://doi.org/10.1088/1748-9326/aa5f3b

    Article  Google Scholar 

  • Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H et al (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn 93:5–48. https://doi.org/10.2151/jmsj.2015-001

    Article  Google Scholar 

  • Li SL (2004) Impact of Northwest Atlantic SST anomalies on the circulation over the Ural Mountains during early winter. J Meteorol Soc Jpn 82:971–988

    Article  Google Scholar 

  • Li ZX, Conil S (2003) Transient response of an atmospheric GCM to North Atlantic SST anomalies. J Clim 16:3993–3998

    Article  Google Scholar 

  • Li CY, Xian P (2003) Atmospheric anomalies related to interdecadal variability of SST in the North Pacific. Adv Atmos Sci 20:859–874

    Article  Google Scholar 

  • Lian Y, Shen BZ, Li SF, Zhao B, Gao ZT, Liu G et al (2013) Impacts of polar vortex, NPO, and SST configurations on unusually cool summers in Northeast China. Part I: analysis and diagnosis. Adv Atmos Sci 30:193–209. https://doi.org/10.1007/s00376-012-1258-x

    Article  Google Scholar 

  • Liu YY, Wang L, Zhou W, Chen W (2014) Three Eurasian teleconnection patterns: spatial structures, temporal variability, and associated winter climate anomalies. Clim Dyn 42:2817–2839. https://doi.org/10.1007/s00382-014-2163-z

    Article  Google Scholar 

  • McCabe GJ, Wolock DM (2010) Long-term variability in Northern Hemisphere snow cover and associations with warmer winters. Clim Change 99:141–153. https://doi.org/10.1007/s10584-009-9675-2

    Article  Google Scholar 

  • Miao JP, Wang T, Wang HJ, Gao YQ (2018) Influence of low-frequency solar forcing on the East Asian winter monsoon based on HadCM3 and observations. Adv Atmos Sci 35:1205–1215. https://doi.org/10.1007/s00376-018-7229-0

    Article  Google Scholar 

  • Palmer TN, Sun ZB (1985) A modelling and observational study of the relationship between sea surface temperature in the north-west Atlantic and the atmospheric general circulation. Quart J R Meteorol Soc 111:947–975

    Article  Google Scholar 

  • Pan L-L (2005) Observed positive feedback between the NAO and the North Atlantic SSTA tripole. Geophys Res Lett 32:L06707. https://doi.org/10.1029/2005GL022427

    Article  Google Scholar 

  • Peng SL (1993) Atmosphere-ocean interactions in the mid-latitude North Atlantic and the impact on river runoff over Siberia. Dissertation, McGill University

  • Peng SL, Mysak LA, Ritchie H, Derome J, Dugas B (1995) The differences between early and midwinter atmospheric responses to sea surface temperature anomalies in the Northwest Atlantic. J Clim 8:137–157

    Article  Google Scholar 

  • Peng SL, Robinson WA, Li SL (2003) Mechanisms for the NAO responses to the North Atlantic SST tripole. J Clim 16:1987–2004

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. https://doi.org/10.1029/2002JD002670

    Article  Google Scholar 

  • Robertson AW, Mechoso CR, Kim Y-J (2000) The influence of Atlantic sea surface temperature anomalies on the North Atlantic Oscillation. J Clim 13:122–138

    Article  Google Scholar 

  • Rodríguez-Fonseca B, Polo I, Serrano E, Castro M (2006) Evaluation of the North Atlantic SST forcing on the European and Northern African winter climate. Int J Climatol 26:179–191. https://doi.org/10.1002/joc.1234

    Article  Google Scholar 

  • Rogers JC, Rohli RV (1991) Florida citrus freezes and polar anticyclone in the Great plains. J Clim 4:1103–1113

    Article  Google Scholar 

  • Rohli RV, Wrona KM, Mchugh MJ (2005) January Northern Hemisphere circumpolar vortex variability and its relationship with hemispheric temperature and regional teleconnections. Int J Climatol 25:1421–1436. https://doi.org/10.1002/joc.1204

    Article  Google Scholar 

  • Sun JQ (2014) Record-breaking SST over mid-North Atlantic and extreme high temperature over the Jianghuai-Jiangnan region of China in 2013. Chin Sci Bull 59:3465–3470. https://doi.org/10.1007/s11434-014-0425-0

    Article  Google Scholar 

  • Sun JQ, Wang HJ, Yuan W (2009) Role of the tropical Atlantic sea surface temperature in the decadal change of the summer North Atlantic oscillation. J Geophys Res 114:D20110. https://doi.org/10.1029/2009JD012395

    Article  Google Scholar 

  • Takaya K, Nakamura H (2001) A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J Atmos Sci 58:608–627

    Article  Google Scholar 

  • The Research Group on Polar Vortex and Temperature Long Range Forecasting (1990) The physical parameters for describing the characteristic of polar vortex and their preliminary climatological analysis. In: Zhang JJ (ed) Proceedings of long-range weather forecasting. China Meteorological Press, Beijing, pp 151–160

    Google Scholar 

  • Wang L, Liu YY, Zhang Y, Chen W, Chen SF (2019) Time-varying structure of the wintertime Eurasian pattern: role of the North Atlantic sea surface temperature and atmospheric mean flow. Clim Dyn 52:2467–2479. https://doi.org/10.1007/s00382-018-4261-9

    Article  Google Scholar 

  • Waugh DW, Sobel AH, Polvani LM (2017) What is the polar vortex and how does it influence weather? Bull Am Meteor Soc 98:37–44. https://doi.org/10.1175/BAMS-D-15-00212.1

    Article  Google Scholar 

  • Wu BY, Huang RH, Gao DY (1999) Effects of variation of winter sea-ice area in Kara and Barents seas on East Asia winter monsoon. Acta Meteorol Sin 13:141–153

    Google Scholar 

  • Wu RG, Yang S, Liu S, Sun L, Lian Y, Gao ZT (2011) Northeast China summer temperature and North Atlantic SST. J Geophys Res 116:D16116. https://doi.org/10.1029/2011JD015779

    Article  Google Scholar 

  • Yu S, Sun JQ (2020) Potential factors modulating ENSO’s influences on the East Asian trough in boreal winter. Int J Climatol. https://doi.org/10.1002/joc.6505

    Article  Google Scholar 

  • Yu LS, Jin XZ, Weller RA (2008) Multidecadel global flux datasets from the Objectively Analyzed Air–Sea Fluxes (OAFlux) Project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution, OAFlux Project Technical Report (OA-2008-01), 64 pp

  • Zhao CS, Dabu X, Li Y (2004) Relationship between climatic factors and dust storm frequency in Inner Mongolia of China. Geophys Res Lett 31:L01103. https://doi.org/10.1029/2003GL018351

    Article  Google Scholar 

  • Zhong KY, Zheng FL, Wu HY, Qin C, Xu XM (2017) Dynamic changes in temperature extremes and their associations with atmospheric circulation patterns in the Songhua river basin, China. Atmos Res 190:77–88. https://doi.org/10.1016/j.atmosres.2017.02.012

    Article  Google Scholar 

  • Zorita E, Kharin V, Von Storch H (1992) The atmospheric circulation and sea surface temperature in the North Atlantic area in winter: their interaction and relevance for Iberian precipitation. J Clim 5:1097–1108

    Article  Google Scholar 

  • Zuo JQ, Li WJ, Sun CH, Ren H-C (2019) Remote forcing of the Northern tropical Atlantic SST anomalies on the western North Pacific anomalous anticyclone. Clim Dyn 52:2837–2853. https://doi.org/10.1007/s00382-018-4298-9

    Article  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China (Grant/award numbers: 41421004 and 41825010).

Funding

This work was funded by the National Natural Science Foundation of China (Grant/Award numbers: 41421004 and 41825010).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SY and JQS; methodology, SY and JQS; software, SY; formal analysis, SY and JQS; investigation, SY and JQS; resources, SY; data curation, SY; writing-original draft preparation, SY; writing-review and editing, JQS; visualization, SY and JQS; supervision, JQS. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jianqi Sun.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Sun, J. Conditional impact of boreal autumn North Atlantic SST anomaly on winter tropospheric Asian polar vortex. Clim Dyn 56, 855–871 (2021). https://doi.org/10.1007/s00382-020-05507-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-020-05507-9

Keywords

Navigation