Skip to main content

Advertisement

Log in

Regional modeling of surface mass balance on the Cook Ice Cap, Kerguelen Islands (\(49^{\circ }\mathrm{S}\), \(69^{\circ }\mathrm{E}\))

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We assess the ability of the regional circulation model MAR to represent the recent negative surface mass balance (SMB) observed over the Kerguelen Islands (\(49^{\circ }\hbox {S}\), \(69^{\circ }\hbox {E}\)) and evaluate the uncertainties in SMB projections until the end of the century. The MAR model forced by ERA-Interim reanalysis shows a good agreement with meteorological observations at Kerguelen, particularly after slight adjustment of the forcing fields (+ 10% humidity, \(+\,0.8\, ^{\circ }\hbox {C}\), all year round) to improve precipitation occurrence and intensity. The modeled SMB and surface energy balance (SEB) are also successfully evaluated with observations, and spatial distributions are explained as being largely driven by the elevation gradient and by the strong west to east foehn effect occurring on the ice cap. We select five general circulation models (GCMs) from the Coupled Model Intercomparison Project phase 5 (CMIP5) by evaluating their ability to represent temperature and humidity in the southern mid-latitudes over 1980–1999 with respect to ERA-Interim and use them to force the MAR model. These simulations fail to replicate SMB observations even when outputs from the best CMIP5 model (ACCESS1-3) are used as forcing because all GCMs fail in accurately reproducing the circulation changes observed at Kerguelen since the mid-1970s. Global models chosen to represent extreme values of SMB drivers also fail in producing extreme values of SMB, suggesting that more rigorous modeling of present and future circulation changes with GCMs is still needed to accurately assess future changes of the cryosphere in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agosta C, Favier V, Krinner G, Gallée H, Fettweis X, Genthon C (2013) High resolution modelling of the Antarctic surface mass balance, application for the twentieth, twenty first and twenty second centuries. Clim Dyn 41(11–12):3247–3260

    Article  Google Scholar 

  • Agosta C, Fettweis X, Datta R (2015) Evaluation of the CMIP5 models in the aim of regional modelling of the Antarctic surface mass balance. Cryosphere 9:2311–2321. https://doi.org/10.5194/tc-9-2311-2015

    Article  Google Scholar 

  • Amante C, Eakins B (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA technical memorandum NESDIS NGDC-24

  • Bechtold P, Bazile E, Guichard F, Mascart P, Richard E (2001) A mass-flux convection scheme for regional and global models. Q J R Meteorol Soc 127(573):869–886

    Article  Google Scholar 

  • Berthier E, Le Bris R, Mabileau L, Testut L, Remy F (2009) Ice wastage on the Kerguelen Islands (49 degrees S, 69 degrees E) between 1963 and 2006. J Geophys Res 114:F03005. https://doi.org/10.1029/2008JF001192

    Article  Google Scholar 

  • Bi D, Dix M, Marsland S, OFarrell S, Rashid H, Uotila P, Hirst A, Kowalczyk E, Golebiewski M, Sullivan A, Yan H, Hannah N, Franklin C, Sun Z, Vohralik P, Watterson I, Zhou X, Fiedler R, Collier M, Ma Y, Noonan J, Stevens L, Uhe P, Zhu H, Griffies S, Hill R, Harris C, Puri K (2013) The ACCESS coupled model: description, control climate and evaluation. Austral Meteorol Oceanogr J 63(1):41–64

    Article  Google Scholar 

  • Brun E, David P, Sudul M, Brunot G (1992) A numerical model to simulate snowcover stratigraphy for operational avalanche forecasting. J Glaciol 38(1):13–22

    Article  Google Scholar 

  • Cabré MF, Solman S, Núñez M (2016) Regional climate change scenarios over southern South America for future climate (2080–2099) using the MM5 model: mean, interannual variability and uncertainties. Atmósfera 29(1):35–60

    Article  Google Scholar 

  • De Ridder K, Gallée H (1998) Land surface-induced regional climate change in southern Israel. J Appl Meteorol 37(11):1470–1485

    Article  Google Scholar 

  • Dee D, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer P, Bechtold P, Beljaars A, van de Berg L, Bidlot J, Bormann N, Cand Delsol R, Dragani Fuentes M, Geer A, Haimberger L, Healy S, Hersbach H, Hólm E, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally A, Monge-Sanz B, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Delworth T, Zeng F (2014) Regional rainfall decline in Australia attributed to anthropogenic greenhouse gases and ozone levels. Nat Geosci 7:583–587. https://doi.org/10.1038/ngeo2201

    Article  Google Scholar 

  • Déqué M (2007) Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: model results and statistical correction according to observed values. Glob Planet Change 57(1):16–26. https://doi.org/10.1016/j.gloplacha.2006.11.030

    Article  Google Scholar 

  • Duynkerke P, van den Broeke M (1994) Surface energy balance and katabatic flow over glacier and tundra during GIMEX-91. Glob Planet Change 9(1):17–28

    Article  Google Scholar 

  • Falvey M, Garreaud R (2009) Regional cooling in a warming world: recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979–2006). J Geophys Res 114:D04102. https://doi.org/10.1029/2008JD010519

    Article  Google Scholar 

  • Favier V, Agosta C, Genthon C, Arnaud L, Trouvillez A, Gallée H (2011) Modeling the mass and surface heat budgets in a coastal blue ice area of Adelie Land, Antarctica. J Geophys Res Earth Surf 116:F03017. https://doi.org/10.1029/2010JF001939

    Article  Google Scholar 

  • Favier V, Verfaillie D, Berthier E, Menegoz M, Jomelli V, Kay J, Ducret L, Malbéteau Y, Brunstein D, Gallée H, Park Y, Rinterknecht V (2016) Atmospheric drying as the main driver of dramatic glacier wastage in the southern Indian Ocean. Sci Rep 6:32396. https://doi.org/10.1038/srep32396

    Article  Google Scholar 

  • Fettweis X, Franco B, Tedesco M, van Angelen J, Lenaerts J, van den Broeke M, Gallée H (2013) Estimating Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. Cryosphere 7(2):469–489

    Article  Google Scholar 

  • Fettweis X, Box JE, Agosta C, Amory C, Kittel C, Lang C, van As D, Machguth H, Gallée H (2017) Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model. Cryosphere 11(2):1015

    Article  Google Scholar 

  • Fitzharris B, Chinn T, Lamont G (1997) Glacier balance fluctuations an atmospheric circulation patterns over the Southern Alps, New Zealand. Int J Clim 17:745–763. https://doi.org/10.1002/(SICI)1097-0088(19970615)

    Article  Google Scholar 

  • Fitzharris B, Clare G, Renwick J (2007) Teleconnections between Andean and New Zealand glaciers. Glob Planet Change 59(1–4):159–174. https://doi.org/10.1016/j.gloplacha.2006.11.022

    Article  Google Scholar 

  • Fonseca R, Martín-Torres J (2018) High-resolution dynamical downscaling of re-analysis data over the Kerguelen Islands using the WRF model. Theor Appl Climatol. https://doi.org/10.1007/s00704-018-2438-0

    Article  Google Scholar 

  • Fouquart Y, Bonnel B (1980) Computations of solar heating of the earth’s atmosphere—a new parameterization. Beiträge zur Physik der Atmosphäre 53:35–62

    Google Scholar 

  • Frenot Y, Gloaguen JC, Picot G, Bougre J, Benjamin D (1993) Azorella selago Hook. Used to estimate glacier fluctuations and climatic history in the Kerguelen Islands over the last two centuries. Oecologia 95:140–144. https://doi.org/10.1007/BF00649517

    Article  Google Scholar 

  • Frenot Y, Gloaguen JC, Van de Vijver B, Beyens L (1997) Datation of some Holocene peat sediments and glacier fluctuations in the Kerguelen Islands. Comptes Rendus de l’Académie des Sciences, Série III-Sci de la Vie - Life Sci 320(7):567–573. https://doi.org/10.1016/S0764-4469(97)84712-9

    Article  Google Scholar 

  • Gallée H, Duynkerke P (1997) Air-snow interactions and the surface energy and mass balance over the melting zone of west Greenland during the Greenland ice margin experiment. J Geophys Res 102(D12):13813–13824. https://doi.org/10.1029/96JD03358

    Article  Google Scholar 

  • Gallée H, Schayes G (1994) Development of a three-dimensional meso-\(\gamma\) primitive equation model: Katabatic winds simulation in the area of Terra Nova Bay, Antarctica. Mon Weather Rev 122(4):671–685

    Article  Google Scholar 

  • Gallée H, Guyomarc’h G, Brun E (2001) Impact of snow drift on the Antarctic ice sheet surface mass balance: possible sensitivity to snow-surface properties. Bound Layer Meteorol 99(1):1–19. https://doi.org/10.1023/A:1018776422809

    Article  Google Scholar 

  • Garreaud R, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American climate. Palaeogeogr Palaeoclimatol Palaeoecol 281:180–195. https://doi.org/10.1016/j.palaeo.2007.10.032

    Article  Google Scholar 

  • Garreaud R, Lopez P, Minvielle M, Rojas M (2013) Large-scale control on the Patagonian climate. J Clim 26(1):215–230

    Article  Google Scholar 

  • Gobiet A, Suklitsch M, Heinrich G (2015) The effect of empirical-statistical correction of intensity-dependent model errors on the temperature climate change signal. Hydrol Earth Syst Sci 19(10):4055–4066. https://doi.org/10.5194/hess-19-4055-2015

    Article  Google Scholar 

  • Guldberg A, Kaas E, Déqué M, Yang S, Thorsen S (2005) Reduction of systematic errors by empirical model correction: impact on seasonal prediction skill. Tellus A 57(4):575–588. https://doi.org/10.1111/j.1600-0870.2005.00120.x

    Article  Google Scholar 

  • Hooker B, Fitzharris B (1999) The correlation between climatic parameters and the retreat and advance of Franz Josef Glacier, New Zealand. Glob Planet Change 22(1):39–48. https://doi.org/10.1016/S0921-8181(99)00023-5

    Article  Google Scholar 

  • Jomelli V, Mokadem F, Schimmelpfennig I, Chapron E, Rinterknecht V, Favier V, Verfaillie D, Brunstein D, Legentil C, Michel E, Swingedouw D, Jaouen A, Aumaitre G, Bourlès DL, Keddadouche K (2017) Sub-Antarctic glacier extensions in the Kerguelen region (\(49^{\circ }\text{ S }\), Indian Ocean) over the past 24,000 years constrained by \(^{36}\)Cl moraine dating. Quat Sci Rev 162:128–144

    Article  Google Scholar 

  • Jomelli V, Schimmelpfennig I, Favier V, Mokadem F, Landais A, Rinterknecht V, Brunstein D, Verfaillie D, Legentil C, Aumaitre G, Bourlès DL, Keddadouche K (2018) Glacier extent in sub-Antarctic Kerguelen Archipelago from MIS 3 period: evidence from \(^{36}\)Cl dating. Quat Sci Rev 183:110–123

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K, Ropelewski C, Wang J, Roy J, Dennis J (1996) The NCEP/NCAR 40-Year reanalysis project. Bull Am Meteorol Soc 77(3):437–471

    Article  Google Scholar 

  • Kessler E (1969) On the distribution and continuity of water substance in atmospheric circulation, vol 10. American Meteorological Society, Boston

    Book  Google Scholar 

  • Kharin V, Scinocca J (2012) The impact of model fidelity on seasonal predictive skill. Geophys Res Lett 39:L18803. https://doi.org/10.1029/2012GL052815

    Article  Google Scholar 

  • Krinner G, Magand O, Simmonds I, Genthon C, Dufresne JL (2007) Simulated Antarctic precipitation and surface mass balance at the end of the twentieth and twenty-first centuries. Clim Dyn 28(2–3):215–230. https://doi.org/10.1007/s00382-006-0177-x

    Article  Google Scholar 

  • Larson L, Peck E (1974) Accuracy of precipitation measurements for hydrologic modeling. Water Resour Res 10(4):857–863. https://doi.org/10.1029/WR010i004p00857

    Article  Google Scholar 

  • Lefebre F, Gallée H, Van Ypersele JP, Greuell W (2002) Modelling of snow and ice melt at ETH-Camp (West Greenland): a study of surface albedo. J Geophys Res. https://doi.org/10.1029/2001JD001160

    Article  Google Scholar 

  • Lin YL, Farley R, Orville H (1983) Bulk parameterization of the snow field in a cloud model. J Clim Appl Meteorol 22(6):1065–1092

    Article  Google Scholar 

  • Marzeion B, Jarosch A, Hofer M (2012) Past and future sea-level change from the surface mass balance of glaciers. Cryosphere 6(6):1295–1322. https://doi.org/10.5194/tc-6-1295-2012

    Article  Google Scholar 

  • Ménégoz M, Gallée H, Jacobi H (2013) Precipitation and snow cover in the Himalaya: from reanalysis to regional climate simulations. Hydrol Earth Syst Sci 17(10):3921–3936. https://doi.org/10.5194/hess-17-3921-2013

    Article  Google Scholar 

  • Monin A, Obukhov A (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib Geophys Inst Acad Sci USSR 24(151):163–187

    Google Scholar 

  • Morcrette JJ (2002) Assessment of the ECMWF model cloudiness and surface radiation fields at the ARMSGP site. Mon Weather Rev 130(2):257–277

    Article  Google Scholar 

  • Neale S, Fitzharris B (1997) Energy balance and synoptic climatology of a melting snowpack in the Southern Alps, New Zealand. Int J Climatol 17(14):1595–1609

    Article  Google Scholar 

  • Palerme C, Genthon C, Claud C, Kay J, Wood N, L'Ecuyer T (2017) Evaluation of current and projected Antarctic precipitation in CMIP5 models. Clim Dyn 48(1–2):225–239. https://doi.org/10.1007/s00382-016-3071-1

    Article  Google Scholar 

  • Poggi A (1977a) Etude comparative du bilan thermique en deux stations du glacier Ampère Iles Kerguelen. Zeitschrift für Gletscherkunde und Glazialgeologie 13:87–97

    Google Scholar 

  • Poggi A (1977b) Heat Balance in ablation area of Ampere Glacier (Kerguelen Islands). J Appl Meteorol 16:48–55

    Article  Google Scholar 

  • Purich A, Cowan T, Min SK, Cai W (2013) Autumn precipitation trends over Southern Hemisphere midlatitudes as simulated by CMIP5 models. J Clim 26(21):8341–8356. https://doi.org/10.1175/JCLI-D-13-00007.1

    Article  Google Scholar 

  • Radić V, Bliss A, Beedlow AC, Hock R, Miles E, Cogley JG (2014) Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Clim Dyn 42(1–2):37–58. https://doi.org/10.1007/s00382-013-1719-7

    Article  Google Scholar 

  • Schaefer M, Machguth H, Falvey M, Casassa G (2013) Modeling past and future surface mass balance of the Northern Patagonia Icefield. J Geophys Res Earth Surf 118(2):571–588. https://doi.org/10.1002/jgrf.20038

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (2007) IPCC, 2007: Climate change 2007: The physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change

  • Takeuchi Y, Naruse R, Satow K, Ishikawa N (1999) Comparison of heat balance characteristics at five glaciers in the southern hemisphere. Glob Planet Change 22(1):201–208. https://doi.org/10.1016/S0921-8181(99)00037-5

    Article  Google Scholar 

  • Taylor K, Stouffer R, Meehl G (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498

    Article  Google Scholar 

  • Thompson D, Solomon S, Kushner P, England M, Grise K, Karoly D (2011) Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat Geosci 4:741–749. https://doi.org/10.1038/ngeo1296

    Article  Google Scholar 

  • Uppala S, Kållberg P, Simmons A, Andrae U, Bechtold V, Fiorino M, Gibson J, Haseler J, Hernandez A, Kelly G, Li X, Onogi K, Saarinen S, Sokka N, Allan R, Andersson E, Arpe K, Balmaseda M, Beljaars A, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins B, Isaksen L, Janssen P, Jenne R, Mcnally A, Mahfouf JF, Morcrette JJ, Rayner N, Saunders R, Simon P, Sterl A, Trenberth K, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012. https://doi.org/10.1256/qj.04.176

    Article  Google Scholar 

  • Vallon M (1977a) Bilan de masse et fluctuations récentes du Glacier Ampère (Iles Kerguelen, TAAF). Zeitschrift für Gletscherkunde und Glazialgeologie 13:55–85

    Google Scholar 

  • Vallon M (1977b) Topographie sous glaciaire du Glacier Ampère (Iles Kerguelen, TAAF). Zeitschrift für Gletscherkunde und Glazialgeologie 13:37–55

    Google Scholar 

  • Vallon M (1987) Glaciologie à Kerguelen. In: Actes du Colloque sur la Recherche Française dans les Terres Australes, Strasbourg

  • Verfaillie D (2014) Suivi et modélisation du bilan de masse de la calotte Cook aux Îles Kerguelen - lien avec le changement climatique. PhD thesis, Université Joseph Fourier, Grenoble

  • Verfaillie D, Favier V, Dumont M, Jomelli V, Gilbert A, Brunstein D, Gallée H, Rinterknecht V, Menegoz M, Frenot Y (2015) Recent glacier decline in the Kerguelen Islands (\(49^\circ\) S, \(69^\circ\) E) derived from modeling, field observations and satellite data. J Geophys Res 120(3):637–654. https://doi.org/10.1002/2014JF003329

    Article  Google Scholar 

  • Verfaillie D, Déqué M, Morin S, Lafaysse M (2017) The method ADAMONT v1.0 for statistical adjustment of climate projections applicable to energy balance land surface models. Geosci Model Dev 10:4257–4283. https://doi.org/10.5194/gmd-10-4257-2017

    Article  Google Scholar 

  • Wagnon P, Lafaysse M, Lejeune Y, Maisinsho L, Rojas M, Chazarin J (2009) Understanding and modelling the physical processes that govern the melting of the snow cover in a tropical mountain environment in Ecuador. J Geophys Res 114:D19113. https://doi.org/10.1029/2009JD012292

    Article  Google Scholar 

  • Wang G, Kay W (2013) Climate-change impact on the 20th-century relationship between the Southern Annular Mode and global mean temperature. Sci Rep 3:2039. https://doi.org/10.1038/srep02039

    Article  Google Scholar 

  • Wyard C, Doutreloup S, Belleflamme A, Wild M, Fettweis X (2018) Global radiative flux and cloudiness variability for the Period 1959–2010 in Belgium: a comparison between reanalyses and the regional climate model MAR. Atmosphere 9(7):262. https://doi.org/10.3390/atmos9070262

    Article  Google Scholar 

  • Yen YC (1981) Review of thermal properties of snow, ice and sea ice. Tech. rep, CRREL Hanover

Download references

Acknowledgements

This study was funded by IPEV-1048 GLACIOCLIM-KESAACO and LEFE-INSU KCRuMBLE programs. Deborah Verfaillie’s work has been partially funded by the European project EUCP (H2020-SC5-2016-776613). Logistical supply to the Kerguelen Islands was provided by the French Polar Institute (IPEV). We particularly thank Météo France for the meteorological data from PAF. ERA-Interim reanalysis data were downloaded from the ECMWF data portal at http://apps.ecmwf.int/archive-catalogue/. We acknowledge the World Climate Research Program’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Supplementary Table 1) for producing and making available their model outputs. Regional climate modeling was performed using the Froggy platform of the CIMENT infrastructure (https://ciment.ujf-grenoble.fr), which is supported by the Rhône-Alpes region (GRANT CPER07_13 CIRA), the OSUG@2020 labex (reference ANR10 LABX56) and the Equip@Meso project (reference ANR-10-EQPX-29-01) of the programme Investissements d’Avenir supervised by the Agence Nationale pour la Recherche. We would like to thank Rachel H. White and Marcus Falls for their help with language editing, and the Editor and an anonymous Reviewer for their constructive comments during the review of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah Verfaillie.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 35164 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verfaillie, D., Favier, V., Gallée, H. et al. Regional modeling of surface mass balance on the Cook Ice Cap, Kerguelen Islands (\(49^{\circ }\mathrm{S}\), \(69^{\circ }\mathrm{E}\)). Clim Dyn 53, 5909–5925 (2019). https://doi.org/10.1007/s00382-019-04904-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-019-04904-z

Keywords

Navigation