Skip to main content

Advertisement

Log in

Decadal prediction skill using a high-resolution climate model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The ability of a high-resolution coupled atmosphere–ocean general circulation model (with a horizontal resolution of a quarter of a degree in the ocean and of about 0.5° in the atmosphere) to predict the annual means of temperature, precipitation, sea-ice volume and extent is assessed based on initialized hindcasts over the 1993–2009 period. Significant skill in predicting sea surface temperatures is obtained, especially over the North Atlantic, the tropical Atlantic and the Indian Ocean. The Sea Ice Extent and volume are also reasonably predicted in winter (March) and summer (September). The model skill is mainly due to the external forcing associated with well-mixed greenhouse gases. A decrease in the global warming rate associated with a negative phase of the Pacific Decadal Oscillation is simulated by the model over a suite of 10-year periods when initialized from starting dates between 1999 and 2003. The model ability to predict regional change is investigated by focusing on the mid-90’s Atlantic Ocean subpolar gyre warming. The model simulates the North Atlantic warming associated with a meridional heat transport increase, a strengthening of the North Atlantic current and a deepening of the mixed layer over the Labrador Sea. The atmosphere plays a role in the warming through a modulation of the North Atlantic Oscillation: a negative sea level pressure anomaly, located south of the subpolar gyre is associated with a wind speed decrease over the subpolar gyre. This leads to a reduced oceanic heat-loss and favors a northward displacement of anomalously warm and salty subtropical water that both concur to the subpolar gyre warming. We finally conclude that the subpolar gyre warming is mainly triggered by ocean dynamics with a possible contribution of atmospheric circulation favoring its persistence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Bacmeister JT et al (2014) Exploratory high-resolution climate simulations using the Community Atmosphere Model (CAM). J Clim 27:3073–3099

    Article  Google Scholar 

  • Balmaseda M, Mogensen K, Molteni F, Weaver A (2010) The NEMOVAR-COMBINE ocean re-analysis. COMBINE Technical Report No 1

  • Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. Q J R Meteorolog Soc 139:1132–1161

    Article  Google Scholar 

  • Barnier B et al (2006) Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn 56:543–567

    Article  Google Scholar 

  • Barrier N, Cassou C, Deshayes J, Treguier A-M (2014) Response of North Atlantic Ocean circulation to atmospheric weather regimes. J Phys Oceanogr 44:179–201

    Article  Google Scholar 

  • Barrier N, Deshayes J, Treguier A-M, Cassou C (2015) Heat budget in the North Atlantic subpolar gyre: impacts of atmospheric weather regimes on the 1995 warming event. Prog Oceanogr 130:75–90

    Article  Google Scholar 

  • Bellucci A et al (2013) Decadal climate predictions with a coupled OAGCM initialized with oceanic reanalyses. Clim Dyn 40:1483–1497

    Article  Google Scholar 

  • Bellucci A et al (2014) An assessment of a multi-model ensemble of decadal climate predictions. Clim Dyn 44:2787–2806

    Article  Google Scholar 

  • Bellucci A et al (2015) Advancements in decadal climate predictability: the role of nonoceanic drivers. Rev Geophys 53:165–202

    Article  Google Scholar 

  • Bersch M (2002) North Atlantic Oscillation–induced changes of the upper layer circulation in the northern North Atlantic Ocean. J Geophy Res Oceans 107

  • Bersch M, Yashayaev I, Koltermann KP (2007) Recent changes of the thermohaline circulation in the subpolar North Atlantic. Ocean Dyn 57:223–235

    Article  Google Scholar 

  • Blanchard-Wrigglesworth E, Bitz C, Holland M (2011) Influence of initial conditions and climate forcing on predicting Arctic sea ice. Geophy Res Lett 38:L18503. doi:10.1029/2011GL048807

    Article  Google Scholar 

  • Boer G (2000) A study of atmosphere-ocean predictability on long time scales. Clim Dyn 16:469–477

    Article  Google Scholar 

  • Brönnimann S (2007) Impact of El Niño–southern oscillation on european climate. Rev Geophy 45:RG3003. doi:10.1029/2006RG000199

    Article  Google Scholar 

  • Brühl C, Lelieveld J, Tost H, Höpfner M, Glatthor N (2015) Stratospheric sulfur and its implications for radiative forcing simulated by the chemistry climate model EMAC. J Geophys Res Atmos 120:2103–2118

    Article  Google Scholar 

  • Chang C-Y, Nigam S, Carton JA (2008) Origin of the springtime westerly bias in equatorial Atlantic surface winds in the community atmosphere model version 3 (CAM3) simulation. J Clim 21:4766–4778

    Article  Google Scholar 

  • Chikamoto Y et al (2013) An overview of decadal climate predictability in a multi-model ensemble by climate model MIROC. Clim Dyn 40:1201–1222

    Article  Google Scholar 

  • Collins M (2002) Climate predictability on interannual to decadal time scales: the initial value problem. Clim Dyn 19:671–692

    Article  Google Scholar 

  • Collins M et al (2006) Interannual to decadal climate predictability in the North Atlantic: a multimodel-ensemble study. J Clim 19:1195–1203

    Article  Google Scholar 

  • Cowtan K, Way RG (2014) Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q J R Meteorolog Soc 140:1935–1944

    Article  Google Scholar 

  • Cox P, Stephenson D (2007) A changing climate for prediction. Science 317:207–208

    Article  Google Scholar 

  • Czaja A, Frankignoul C (2002) Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J Clim 15:606–623

    Article  Google Scholar 

  • Day J, Hawkins E, Tietsche S (2014) Will Arctic sea ice thickness initialization improve seasonal forecast skill? Geophys Res Lett 41:7566–7575

    Article  Google Scholar 

  • Dee D et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorolog Soc 137:553–597

    Article  Google Scholar 

  • DelSole T, Shukla J (2010) Model fidelity versus skill in seasonal forecasting. J Clim 23:4794–4806

    Article  Google Scholar 

  • Delworth TL et al (2012) Simulated climate and climate change in the GFDL CM2. 5 high-resolution coupled climate model. J Clim 25:2755–2781

    Article  Google Scholar 

  • Doblas-Reyes F et al (2013a) Initialized near-term regional climate change prediction. Nature Comm 4:1715

  • Doblas-Reyes FJ, García-Serrano J, Lienert F, Biescas AP, Rodrigues LR (2013b) Seasonal climate predictability and forecasting: status and prospects. Wiley interdisciplinary reviews. Clim Change 4:245–268

  • Douville H, Voldoire A, Geoffroy O (2015) The recent global warming hiatus: what is the role of Pacific variability? Geophys Res Lett 42:880–888

    Article  Google Scholar 

  • England MH et al (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Clim Change 4:222–227

    Article  Google Scholar 

  • Ferry N et al (2012) GLORYS2V1 global ocean reanalysis of the altimetric era (1992–2009) at meso scale. Mercator Ocean–Quaterly Newsletter 44

  • Fetterer F, Knowles K, Meier W, Savoie M (2009) Sea ice index. National Snow and Ice Data Center, Boulder, CO, USA. (Digital Media, updated)

  • Fyfe J, Salzen K, Cole J, Gillett N, Vernier JP (2013) Surface response to stratospheric aerosol changes in a coupled atmosphere–ocean model. Geophys Res Lett 40:584–588

    Article  Google Scholar 

  • García-Serrano J, Guemas V, Doblas-Reyes F (2015) Added-value from initialization in predictions of Atlantic multi-decadal variability. Clim Dyn 44:2539–2555

    Article  Google Scholar 

  • Gent PR, Yeager SG, Neale RB, Levis S, Bailey DA (2010) Improvements in a half degree atmosphere/land version of the CCSM. Clim Dyn 34:819–833

    Article  Google Scholar 

  • Germe A, Chevallier M, y Mélia DS, Sanchez-Gomez E, Cassou C (2014) Interannual predictability of Arctic sea ice in a global climate model: regional contrasts and temporal evolution. Clim Dyn 43:2519–2538

    Article  Google Scholar 

  • Goddard L et al (2013) A verification framework for interannual-to-decadal predictions experiments. Clim Dyn 40:245–272

    Article  Google Scholar 

  • Good SA, Martin MJ, Rayner NA (2013) EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J Geophy Res Oceans 118:6704–6716

    Article  Google Scholar 

  • Griffies SM, Bryan K (1997) Predictability of North Atlantic multidecadal climate variability. Science 275:181–184

    Article  Google Scholar 

  • Guemas V, Corti S, García-Serrano J, Doblas-Reyes F, Balmaseda M, Magnusson L (2013a) The Indian Ocean: the region of highest skill worldwide in decadal climate prediction*. J Clim 26:726–739

  • Guemas V, Doblas-Reyes FJ, Andreu-Burillo I, Asif M (2013b) Retrospective prediction of the global warming slowdown in the past decade. Nature. Clim Change 3:649–653

  • Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophy 48:RG4004. doi:10.1029/2010RG000345

    Article  Google Scholar 

  • Hátún H, Sandø AB, Drange H, Hansen B, Valdimarsson H (2005) Influence of the Atlantic subpolar gyre on the thermohaline circulation. Science 309:1841–1844

    Article  Google Scholar 

  • Haywood JM, Jones A, Jones GS (2014) The impact of volcanic eruptions in the period 2000–2013 on global mean temperature trends evaluated in the HadGEM2-ES climate model. Atmos Sci Lett 15:92–96

    Article  Google Scholar 

  • Hibbard KA, Meehl GA, Cox PM, Friedlingstein P (2007) A strategy for climate change stabilization experiments. Eos Trans Am Geophy Union 88:217–221

    Article  Google Scholar 

  • Huang B, Schopf PS, Pan Z (2002) The ENSO effect on the tropical Atlantic variability: a regionally coupled model study. Geophys Res Lett 29:35-31-35-34

    Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679

    Article  Google Scholar 

  • Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic oscillation. Geophy Monogr Am Geoph Union 134:1–36

    Google Scholar 

  • ICPO (2011) Data and bias correction for decadal climate predictions. International CLIVAR Project Office Publication Series 150:5. (Available online at http://www.wcrp-climate.org/decadal/references/DCPP_Bias_Correction.pdf)

  • Jia L et al (2015) Improved seasonal prediction of temperature and precipitation over land in a high-resolution GFDL climate model. J Clim 28:2044–2062

    Article  Google Scholar 

  • Johns WE et al (2011) Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5 N. J Clim 24:2429–2449

    Article  Google Scholar 

  • Jung T et al (2012) High-resolution global climate simulations with the ECMWF model in Project Athena: experimental design, model climate, and seasonal forecast skill. J Clim 25:3155–3172

    Article  Google Scholar 

  • Karspeck A, Yeager S, Danabasoglu G, Teng H (2015) An evaluation of experimental decadal predictions using CCSM4. Clim Dyn 44:907–923

    Article  Google Scholar 

  • Keenlyside N, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453:84–88

    Article  Google Scholar 

  • Kim H-M, Webster PJ, Curry JA (2012) Evaluation of short-term climate change prediction in multi-model CMIP5 decadal hindcasts. Geophy Res Lett 39:L10701. doi:10.1029/2012gl051644

    Google Scholar 

  • Kirtman BP et al (2012) Impact of ocean model resolution on CCSM climate simulations. Clim Dyn 39:1303–1328

    Article  Google Scholar 

  • Kopp G, Lean J-L (2011) A new, lower value of total solar irradiance: evidence and climate significance. Geophy Res Lett 38:L01706

    Article  Google Scholar 

  • Kosaka Y, Xie S-P (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407

    Article  Google Scholar 

  • Koster RD, Suarez MJ (2003) Impact of land surface initialization on seasonal precipitation and temperature prediction. J Hydrometeorol 4:408–423

    Article  Google Scholar 

  • Kruschke T, Rust HW, Kadow C, Müller WA, Pohlmann H, Leckebusch GC, Ulbrich U (2015) Probabilistic evaluation of decadal predictions of Northern Hemisphere winter storms. Meteorol Z doi:10.1127/metz/2015/0641

    Google Scholar 

  • Lee S-K, Park W, Baringer MO, Gordon AL, Huber B, Liu Y (2015) Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nature Geosci 8:445-449

    Google Scholar 

  • Lellouche J-M et al (2013) Evaluation of global monitoring and forecasting systems at Mercator Océan. Ocean Sci 9:57

    Article  Google Scholar 

  • Lindsay R et al (2012) Seasonal forecasts of Arctic sea ice initialized with observations of ice thickness. Geophy Res Lett 39:L21502. doi:10.1029/2012GL053576

    Article  Google Scholar 

  • Lohmann K, Drange H, Bentsen M (2009) Response of the North Atlantic subpolar gyre to persistent North Atlantic oscillation like forcing. Clim Dyn 32:273–285

    Article  Google Scholar 

  • Madec G (2008) NEMO ocean engine. Note du Pole de mode´lisation, Institut Pierre-Simon Laplace (IPSL), France No 27 ISSN:No 1288–1619

  • Matei D, Pohlmann H, Jungclaus J, Müller W, Haak H, Marotzke J (2012) Two tales of initializing decadal climate prediction experiments with the ECHAM5/MPI-OM model. J Clim 25:8502–8523

    Article  Google Scholar 

  • McClean JL et al (2011) A prototype two-decade fully-coupled fine-resolution CCSM simulation. Ocean Model 39:10–30

    Article  Google Scholar 

  • Meehl GA, Arblaster JM, Fasullo JT, Hu A, Trenberth KE (2011) Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nature Clim Change 1:360–364

    Article  Google Scholar 

  • Meehl GA, Teng H, Arblaster JM (2014) Climate model simulations of the observed early-2000s hiatus of global warming. Nature Clim Change 4:898-902

    Article  Google Scholar 

  • Mehta VM, Wang H, Mendoza K (2013) Decadal predictability of tropical basin average and global average sea surface temperatures in CMIP5 experiments with the HadCM3, GFDL-CM2. 1, NCAR-CCSM4, and MIROC5 global Earth System Models. Geophys Res Lett 40:2807–2812

    Article  Google Scholar 

  • Mills MJ et al (2016) Global volcanic aerosol properties derived from emissions, 1990–2014, using CESM1(WACCM). J Geophys Res Atmos 121:2332–2348

    Article  Google Scholar 

  • Mochizuki T et al (2012) Decadal prediction using a recent series of MIROC global climate models. J Meteorol Soc Jpn 90A:373–383

    Article  Google Scholar 

  • Monerie P-A, Moine M-P, Terray L, Valcke S (submitted) Quantifying the impact of early 21st century volcanic eruptions on global-mean surface temperature. Environ Res Lett

  • Morice CP, Kennedy JJ, Rayner NA, Jones PD (2012) Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J Geophy Res Atmos 117:D08101. doi:10.1029/2011JD017187

    Article  Google Scholar 

  • Msadek R, Johns WE, Yeager SG, Danabasoglu G, Delworth TL, Rosati A (2013) The Atlantic meridional heat transport at 26.5 N and its relationship with the MOC in the RAPID array and the GFDL and NCAR coupled models. J Clim 26:4335–4356

    Article  Google Scholar 

  • Msadek R et al (2014a) Predicting a decadal shift in North Atlantic climate variability using the GFDL forecast system. J Clim 27:6472–6496

  • Msadek R, Vecchi G, Winton M, Gudgel R (2014b) Importance of initial conditions in seasonal predictions of Arctic sea ice extent. Geophys Res Lett 41:5208–5215

  • Müller W, Appenzeller C, Schär C (2005) Probabilistic seasonal prediction of the winter North Atlantic oscillation and its impact on near surface temperature. Clim Dyn 24:213–226

    Article  Google Scholar 

  • Noilhan J, Mahfouf J-F (1996) The ISBA land surface parameterisation scheme. Global Planet Change 13:145–159

    Article  Google Scholar 

  • Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117:536–549

    Article  Google Scholar 

  • Okumura Y, Xie S-P (2004) Interaction of the atlantic equatorial Cold tongue and the african monsoon*. J Clim 17:3589–3602

    Article  Google Scholar 

  • Ortega P, Hawkins E, Sutton R (2011) Processes governing the predictability of the Atlantic meridional overturning circulation in a coupled GCM. Clim Dyn 37:1771–1782

    Article  Google Scholar 

  • Ortega P, Montoya M, González-Rouco F, Mignot J, Legutke S (2012) Variability of the Atlantic meridional overturning circulation in the last millennium and two IPCC scenarios. Clim Dyn 38:1925–1947

    Article  Google Scholar 

  • Paolino DA, Kinter JL III, Kirtman BP, Min D, Straus DM (2012) The impact of land surface and atmospheric initialization on seasonal forecasts with CCSM. J Clim 25:1007–1021

    Article  Google Scholar 

  • Pohlmann H, Botzet M, Latif M, Roesch A, Wild M, Tschuck P (2004) Estimating the decadal predictability of a coupled AOGCM. J Clim 17:4463–4472

    Article  Google Scholar 

  • Pohlmann H, Jungclaus JH, Köhl A, Stammer D, Marotzke J (2009) Initializing decadal climate predictions with the GECCO oceanic synthesis: Effects on the North Atlantic. J Clim 22:3926–3938

    Article  Google Scholar 

  • Pohlmann H et al (2013) Predictability of the mid-latitude Atlantic meridional overturning circulation in a multi-model system. Clim Dyn 41:775–785

    Article  Google Scholar 

  • Richter I, Xie S-P (2008) On the origin of equatorial Atlantic biases in coupled general circulation models. Clim Dyn 31:587–598

    Article  Google Scholar 

  • Richter I, Behera SK, Doi T, Taguchi B, Masumoto Y, Xie S-P (2014a) What controls equatorial Atlantic winds in boreal spring? Clim Dyn 43:3091–3104

  • Richter I, Xie S-P, Behera SK, Doi T, Masumoto Y (2014b) Equatorial Atlantic variability and its relation to mean state biases in CMIP5. Clim Dyn 42:171–188

  • Ridley DA et al (2014) Total volcanic stratospheric aerosol optical depths and implications for global climate change. Geophys Res Lett 41:7763–7769

    Article  Google Scholar 

  • Robson J, Sutton R, Lohmann K, Smith D, Palmer MD (2012a) Causes of the rapid warming of the North Atlantic Ocean in the mid-1990s. J Clim 25:4116–4134

  • Robson J, Sutton R, Smith D (2012b) Initialized decadal predictions of the rapid warming of the North Atlantic Ocean in the mid 1990s. Geophy Res Lett 39:L19713. doi:10.1029/2012GL053370

  • Sakamoto T et al (2012) MIROC4h—a new high-resolution atmosphere-ocean coupled general circulation model. J Meteorol Soc Jpn 90:325–359

    Article  Google Scholar 

  • Sanchez-Gomez E, Cassou C, Ruprich-Robert Y, Fernandez E, Terray L (2015) Drift dynamics in a coupled model initialized for decadal forecasts. Clim Dyn 1–22

  • Santer BD et al (2014) Volcanic contribution to decadal changes in tropospheric temperature. Nature Geosci 7:185–189

    Article  Google Scholar 

  • Santer BD et al (2015) Observed multivariable signals of late 20th and early 21st century volcanic activity. Geophys Res Lett 42:500–509

    Article  Google Scholar 

  • Sarafanov A, Falina A, Sokov A, Demidov A (2008) Intense warming and salinification of intermediate waters of southern origin in the eastern subpolar North Atlantic in the 1990s to mid-2000s. J Geophy Res Oceans 113:C12022. doi:10.1029/2008JC004975

  • Schmidt GA, Shindell DT, Tsigaridis K (2014) Reconciling warming trends. Nat Geosci 7:158–160

    Article  Google Scholar 

  • Schweiger A, Lindsay R, Zhang J, Steele M, Stern H, Kwok R (2011) Uncertainty in modeled Arctic sea ice volume. J Geophy Res Oceans 116

  • Screen JA, Simmonds I (2010) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464:1334–1337

    Article  Google Scholar 

  • Serreze MC, Holland MM, Stroeve J (2007) Perspectives on the Arctic’s shrinking sea-ice cover. Science 315:1533–1536

    Article  Google Scholar 

  • Shaffrey LC et al (2009) UK HiGEM: The new UK high-resolution global environment model-model description and basic evaluation. J Clim 22:1861–1896

    Article  Google Scholar 

  • Sigmond M, Fyfe J, Flato G, Kharin V, Merryfield W (2013) Seasonal forecast skill of Arctic sea ice area in a dynamical forecast system. Geophys Res Lett 40:529–534

    Article  Google Scholar 

  • Simmons A, Uppala S, Dee D, Kobayashi S (2007) ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsl 110:25–35

    Google Scholar 

  • Small RJ et al (2014) A new synoptic scale resolving global climate simulation using the community earth system model. J Adv Model Earth Syst 6:1065–1094

    Article  Google Scholar 

  • Smith DM, Cusack S, Colman AW, Folland CK, Harris GR, Murphy JM (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317:796–799

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Solomon S, Rosenlof KH, Portmann RW, Daniel JS, Davis SM, Sanford TJ, Plattner G-K (2010) Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327:1219–1223

    Article  Google Scholar 

  • Stockdale TN, Balmaseda MA, Vidard A (2006) Tropical Atlantic SST prediction with coupled ocean-atmosphere GCMs. J Clim 19:6047–6061

    Article  Google Scholar 

  • Stroeve JC, Serreze MC, Holland MM, Kay JE, Malanik J, Barrett AP (2012) The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Clim Change 110:1005–1027

    Article  Google Scholar 

  • Szopa S et al (2013) Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100. Clim Dyn 40:2223–2250

    Article  Google Scholar 

  • Timmreck C, Pohlmann H, Illing S, Kadow C (2016) The impact of stratospheric volcanic aerosol on decadal-scale climate predictions. Geophys Res Lett 43:834–842

    Article  Google Scholar 

  • Trenberth KE, Fasullo JT (2013) An apparent hiatus in global warming? Earth’s Future 1:19–32

    Article  Google Scholar 

  • Uppala S, Dee D, Kobayashi S, Berrisford P, Simmons A (2008) Towards a climate data assimilation system: status update of ERA-Interim. ECMWF Newsl 115:12–18

    Google Scholar 

  • Valcke S, Craig T, Coquart L (2013) OASIS3-MCT User Guide OASIS3-MCT 2.0. CERFACS/CNRS SUC URA

  • van Oldenborgh GJ, Doblas-Reyes FJ, Wouters B, Hazeleger W (2012) Decadal prediction skill in a multi-model ensemble. Clim Dyn 38:1263–1280

    Article  Google Scholar 

  • Vancoppenolle M, Fichefet T, Goosse H (2009a) Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 2. Importance of sea ice salinity variations. Ocean Model 27:54–69

  • Vancoppenolle M, Fichefet T, Goosse H, Bouillon S, Madec G, Maqueda MAM (2009b) Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation. Ocean Model 27:33–53

  • Vernier JP et al (2011) Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade. Geophy Res Lett 38:L12807. doi:10.1029/2011GL047563

  • Visbeck M, Chassignet EP, Curry RG, Delworth TL, Dickson RR, Krahmann G (2003) The ocean’s response to North Atlantic Oscillation variability. Geophy Monogr Am Geophy Union 134:113–146

    Google Scholar 

  • Voldoire A et al (2013) The CNRM-CM5. 1 global climate model: description and basic evaluation. Clim Dyn 40:2091–2121

    Article  Google Scholar 

  • Vose RS et al (2012) NOAA’s merged land-ocean surface temperature analysis. Bull Am Meteorol Soc 93:1677–1685

    Article  Google Scholar 

  • Wang M, Overland JE (2009) A sea ice free summer Arctic within 30 years? Geophy Res Lett 36:L07502. doi:10.1029/2009GL037820

  • Watanabe M et al (2013) Strengthening of ocean heat uptake efficiency associated with the recent climate hiatus. Geophys Res Lett 40:3175–3179

    Article  Google Scholar 

  • Yashayaev I (2007) Hydrographic changes in the Labrador Sea, 1960–2005. Prog Oceanogr 73:242–276

    Article  Google Scholar 

  • Yeager S, Karspeck A, Danabasoglu G, Tribbia J, Teng H (2012) A decadal prediction case study: late twentieth-century North Atlantic Ocean heat content. J Clim 25:5173–5189

    Article  Google Scholar 

  • Zermeño-Diaz DM, Zhang C (2013) Possible root causes of surface westerly biases over the equatorial Atlantic in global climate models. J Clim 26:8154–8168

    Article  Google Scholar 

  • Zhang J, Steele M, Lindsay R, Schweiger A, Morison J (2008) Ensemble 1-Year predictions of Arctic sea ice for the spring and summer of 2008. Geophy Res Lett 35.  L08502. doi:10.1029/2008GL033244

Download references

Acknowledgements

We thank the two anonymous reviewers for their helpful and constructive suggestions and comments. The authors gratefully acknowledge the support from the Seventh Framework Programme (FP7) of the European Commission (grant agreement 308378) SPECS Project, the PRECLIDE project funded by the BNP-PARIBAS foundation. Simulations were run thanks to PRACE HiResClim I and II projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul-Arthur Monerie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ODT 1473 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monerie, PA., Coquart, L., Maisonnave, É. et al. Decadal prediction skill using a high-resolution climate model. Clim Dyn 49, 3527–3550 (2017). https://doi.org/10.1007/s00382-017-3528-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3528-x

Keywords

Navigation