Skip to main content

Advertisement

Log in

Permafrost degradation and associated ground settlement estimation under 2 °C global warming

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Global warming of 2 °C above preindustrial levels has been considered to be the threshold that should not be exceeded by the global mean temperature to avoid dangerous interference with the climate system. However, this global mean target has different implications for different regions owing to the globally nonuniform climate change characteristics. Permafrost is sensitive to climate change; moreover, it is widely distributed in high-latitude and high-altitude regions where the greatest warming is predicted. Permafrost is expected to be severely affected by even the 2 °C global warming, which, in turn, affects other systems such as water resources, ecosystems, and infrastructures. Using air and soil temperature data from ten coupled model intercomparison project phase five models combined with observations of frozen ground, we investigated the permafrost thaw and associated ground settlement under 2 °C global warming. Results show that the climate models produced an ensemble mean permafrost area of 14.01 × 106 km2, which compares reasonably with the area of 13.89 × 106 km2 (north of 45°N) in the observations. The models predict that the soil temperature at 6 m depth will increase by 2.34–2.67 °C on area average relative to 1990–2000, and the increase intensifies with increasing latitude. The active layer thickness will also increase by 0.42–0.45 m, but dissimilar to soil temperature, the increase weakens with increasing latitude due to the distinctly cooler permafrost at higher latitudes. The permafrost extent will obviously retreat north and decrease by 24–26% and the ground settlement owing to permafrost thaw is estimated at 3.8–15 cm on area average. Possible uncertainties in this study may be mostly attributed to the less accurate ground ice content data and coarse horizontal resolution of the models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anisimov OA, Nelson FE (1996) Permafrost distribution in the Northern Hemisphere under scenarios of climate change. Glob Planet Change 14:59–72

    Article  Google Scholar 

  • Anisimov OA, Nelson FE (1997) Permafrost zonation and climate change in the Northern Hemisphere: results from transient general circulation models. Clim Change 35:241–258

    Article  Google Scholar 

  • Anisimov OA, Reneva S (2006) Permafrost and changing climate: the Russian perspective. AMBIO 35:169–175

    Article  Google Scholar 

  • Anisimov OA, Fitzharris B, Hagan JO, Jeffries R, Marchant H, Nelson FE, Prowse T, Vaughan DG (2001) Polar regions (Arctic and Antarctic). In: McCarthy JJ et al (eds) Climate change 2001: impacts, adaptation, and vulnerability: contribution of working group II of the intergovernmental panel on climate change. Cambridge University Press, New York, pp 801–841

    Google Scholar 

  • Bentsen M, Bethke I, Debernard JB, Iversen T, Kirkevåg A, Seland Ø, Drange H, Roelandt C, Seierstad IA, Hoose C, Kristjansson JE (2013) The Norwegian Earth System Model, NorESM1-M-Part 1: description and basic evaluation of the physical climate. Geosci Model Dev 6:687–720

    Article  Google Scholar 

  • Brown J, Ferrians OJ Jr, Heginbottom JA, Melnikov ES (1997) Circum-Arctic Map of Permafrost and Ground-Ice Conditions, U. S. Geological Survey in Cooperation with the Circum-Pacific Council for Energy and Mineral Resources, Circum-Pacific Map Series CP-45, scale 1:10,000, 000, 1 sheet

  • Brown J, Hinkel K, Nelson F (2000) The circumpolar active layer monitoring (CALM) program: research designs and initial results. Polar Geogr 24:165–258

    Article  Google Scholar 

  • Burke EJ, Jones CD, Koven CD (2013) Estimating the permafrost-carbon climate response in the CMIP5 climate models using a simplified approach. J Clim 26:4897–4909

    Article  Google Scholar 

  • Burn CR, Nelson FE (2006) Comment on “A projection of severe near-surface permafrost degradation during the 21st century” by David M. Lawrence and Andrew G. Slater. Geophys Res Lett 33:L21503. doi:10.1029/2006GL027077

    Article  Google Scholar 

  • Collins M, Knutti R, Arblaster J, Dufresne JL, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term Climate Change: projections, commitments and irreversibility. In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Cuo L, Zhang Y, Bohn TJ, Zhao L, Li J, Liu Q, Zhou B (2015) Frozen soil degradation and its effects on surface hydrology in the northern Tibetan Plateau. J Geophys Res Atmos 120:8276–8298

    Article  Google Scholar 

  • Dunne JP, John JG, Adcroft AJ, Griffies SM, Hallberg RW, Shevliakova E, Stouffer RJ, Cooke W, et al (2012) GFDL’s ESM2 global coupled climate–carbon Earth System Models. Part I: physical formulation and baseline simulation characteristics. J Clim 25:6646–6665

    Article  Google Scholar 

  • Gao XJ, Wang ML, Giorgi F (2013) Climate change over China in the 21st century as simulated by BCC_CSM1.1-RegCM4.0. Atmos Ocean Sci Lett 6:381–386

    Article  Google Scholar 

  • Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, et al (2011) The community climate system model version 4. J Clim 24:4973–4991

    Article  Google Scholar 

  • Giannakopoulos C, Le Sager P, Bindi M, Moriondo M, Kostopoulou E, Goodess CM (2009) Climatic changes and associated impacts in the Mediterranean resulting from a 2 °C global warming. Glob Planet Change 68:209–224

    Article  Google Scholar 

  • Gilichinsky D, Barry R, Bykhovets S, Sorokovikov V, Zhang T, Zudin S, Fedorov-Davydov D (1998) A century of temperature observations of soil climate: methods of analysis and long-term trends, Proc. Seventh Int. Conf. on Permafrost, Yellowknife, Northwest Territories. International Permafrost Association, Canada, pp 23–27

    Google Scholar 

  • Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Coauthors (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J Adv Model Earth Syst 5:572–597

    Article  Google Scholar 

  • Guo DL, Sun JQ (2015) Permafrost thaw and associated settlement hazard onset timing over the Qinghai-Tibet engineering corridor. Int J Disaster Risk Sci 6:347–358

    Article  Google Scholar 

  • Guo DL, Wang HJ (2012) The significant climate warming in the northern Tibetan Plateau and its possible causes. Int J Climatol 32:1775–1781

    Article  Google Scholar 

  • Guo DL, Wang HJ (2013) Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981–2010. J Geophys Res Atmos 118:5216–5230

    Article  Google Scholar 

  • Guo DL, Wang HJ (2014) Simulated change in the near-surface soil freeze/thaw cycle on the Tibetan Plateau from 1981 to 2010. Chin Sci Bull 59:2439–2448

    Article  Google Scholar 

  • Guo DL, Wang HJ (2016a) Comparison of a very-fine-resolution GCM and RCM dynamical downscaling in simulating climate in China. Adv Atmos Sci 33:559–570

    Article  Google Scholar 

  • Guo DL, Wang HJ (2016b) CMIP5 permafrost degradation projection: s comparison among different regions. J Geophys Res Atmos 121:4499–4517

    Article  Google Scholar 

  • Guo DL, Yang MX, Wang HJ (2011a) Characteristics of land surface heat and water exchange under different soil freeze/thaw conditions over the central Tibetan Plateau. Hydrol Process 25:2531–2541

    Article  Google Scholar 

  • Guo DL, Yang MX, Wang HJ (2011b) Sensible and latent heat flux response to diurnal variation in soil surface temperature and moisture under different freeze/thaw soil conditions in the seasonal frozen soil region of the central Tibetan Plateau. Environ Earth Sci 63:97–107

    Article  Google Scholar 

  • Guo DL, Wang HJ, Li D (2012) A projection of permafrost degradation on the Tibetan Plateau during the 21st century. J Geophys Res 117:D05106. doi:10.1029/2011JD016545

    Google Scholar 

  • Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai PM (2013) Observations: Atmosphere and Surface. In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Hua WJ, Chen HS, Sun SL (2014) Uncertainty in land surface temperature simulation over China by CMIP3/CMIP5 climate models. Theor Appl Climatol 117:363–474

  • James WH, Holland MM, Gent PR, Ghan S, Kay JE, Kushner PJ, Lamarque JF, Large WG, et al (2013) The Community Earth System Model: a framework for collaborative research. Bull Am Meteorol Soc 94:1339–1360

    Article  Google Scholar 

  • Jiang DB, Fu YH (2012) Climate change over China with a 2 °C global warming. Chin. J Atmos Sci 36:234–246 (Chinese)

    Google Scholar 

  • Jiang DB, Sui Y, Lang X (2016) Timing and associated climate change of a 2 °C global warming. Int J Climatol. doi:10.1002/joc.4647

    Google Scholar 

  • Kaplan JO, New M (2006) Arctic climate change with a 2 °C global warming: timing, climate patterns and vegetation change. Clim Change 79:213–241

    Article  Google Scholar 

  • Koven CD, Ringeval B, Friedlingstein P, Ciais P, Cadule P, Khvorostyanov D, Krinner G, Tarnocai C (2011) Permafrost carbon-climate feedbacks accelerate global warming. Proc Natl Acad Sci 108:14769–14774

    Article  Google Scholar 

  • Koven CD, Riley WJ, Stern A (2013) Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth System Models. J Clim 26:1877–1900

    Article  Google Scholar 

  • Lan C, Zhang YX, Bohn TJ, Zhao L, Li JL, Liu QM, Zhou BR (2015) Frozen soil degradation and its effects on surface hydrology in the northern Tibetan Plateau. J Geophys Res Atmos 120:8276–8298

    Article  Google Scholar 

  • Lang XM, Sui Y (2013) Changes in mean and extreme climates over China with a 2 °C global warming. Chin Sci Bull 58:1453–1461

    Article  Google Scholar 

  • Lawrence DM, Slater AG, Romanovsky VE, Nicolsky DJ (2008) Sensitivity of a model projection of near-surface permafrost degradation to soil column depth and representation of soil organic matter. J Geophys Res. doi:10.1029/2007JF000883

    Google Scholar 

  • Lawrence DM, Oleson KW, Flanner MG, Thornton PE, Swenson SC, Lawrence PJ, Zeng XB, Yang ZL, Levis S, Sakaguchi K, Bonan GB, Slater AG (2011) Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J Adv Model Earth Syst. doi:10.1029/2011MS000045

    Google Scholar 

  • Lawrence DM, Slater AG, Swenson SC (2012) Simulation of present-day and future permafrost and seasonally frozen ground conditions in CCSM4. J Clim 25:2207–2225

    Article  Google Scholar 

  • Li Q, Chen HS (2013) Variation of seasonal frozen soil in East China and their association with monsoon activity under the background of global warming. Clim Change Res Lett 2:47–53 (in Chinese)

    Article  Google Scholar 

  • Li F, Wang HJ, Gao YQ (2015) Change in sea ice cover is responsible for non-uniform variation in winter temperature over East Asia. Atmos Oceanic Sci Lett 8:376–382

    Google Scholar 

  • Liljedahl AK, Boike J, Daanen RP, Fedorov AN, Frost GV, Grosse G, Hinzman LD, Iijma Y, Jorgenson JC, Matveyeva N, Necsoiu M, Raynolds MK, Romanovsky VE, Schulla J, Tape KD, Walker DA, Wilson CJ, Yabuki H, Zona D (2016) Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat Geosci 9:312–318

    Article  Google Scholar 

  • Liu Y, Jiang D (2016) Mid-Holocene permafrost: Results from CMIP5 simulations. J Geophys Res Atmos 121:221–240

    Article  Google Scholar 

  • Liu J, Curry JA, Wang HJ, Song M, Horton RM (2012) Impact of declining Arctic sea ice on winter snowfall. Proc Natl Acad Sci 109:4074–4079

    Article  Google Scholar 

  • May W (2012) Assessing the strength of regional changes in near-surface climate associated with a global warming of 2 °C. Clim Change 110:619–644

    Article  Google Scholar 

  • Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458:1158–1162

    Article  Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Vuuren D, Timothy R, Emori S, Coauthors (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756

    Article  Google Scholar 

  • Nelson FE, Anisimov OA, Shiklomanov NI (2001) Subsidence risk from thawing permafrost. Nature 410:889–890

    Article  Google Scholar 

  • Nelson FE, Anisimov OA, Shiklomanov N (2002) Climate change and hazard zonation in the circum-Arctic permafrost regions. Nat Hazards 26:203–225

    Article  Google Scholar 

  • Nicolsky DJ, Romanovsky VE, Alexeev VA, Lawrence DM (2007) Improved modeling of permafrost dynamics in a GCM land-surface scheme. Geophys Res Lett 34:L08501. doi:10.1029/2007GL029525

    Article  Google Scholar 

  • Oleson K, Lawrence D, Bonan G, Flanner M, Kluzek E, Lawrence P, Levis S, Swenson S, Thornton P, Dai A, Decker M, Dickinson R, Feddema J, Heald C, Hoffman F, Lamarque J, Mahowald N, Niu G, Qian T, Randerson J, Running S, Sakaguchi K, Slater A, Stöckli R, Wang A, Yang Z, Zeng X, Zeng X 2010 Technical description of version 4.0 of the community land model (CLM). NCAR technical note NCAR/TN-478+STR. National Center for Atmospheric Research, Boulder, PP 266

    Google Scholar 

  • Qin DH, Zhou BT, Xiao CD (2014) Progress in studies of cryospheric changes and their impacts on climate of China. J Meteorol Res 28:732–746

    Article  Google Scholar 

  • Romanovsky (2010) Development of a network of permafrost observatories in North America and Russia: the US contribution to the international polar year. Advanced Cooperative Arctic Data and Information Service, Boulder, (digital media)

    Google Scholar 

  • Romanovsky VE, Smith SL, Christiansen HH (2010) Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007–2009: a synthesis. Permafr Periglac Process 21:106–116

    Article  Google Scholar 

  • Schneider SH, Semenov S, Patwardhan A, Burton I, Magadza CHD, Oppenheimer M, Pittock AB, Rahman A, Smith JB, Suarez A, Yamin F (2007) Assessing key vulnerabilities and the risk from climate change, climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Cambridge University Press, Cambridge, pp 779–810

    Google Scholar 

  • Schuur E, Vogel J, Crummer K, Lee H, Sickman J, Osterkamp T (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459:556–559

    Article  Google Scholar 

  • Schuur E, McGuire AD, Schädel C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt D, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC, Vonk JE (2015) Climate change and the permafrost carbon feedback. Nature 520:171–179

    Article  Google Scholar 

  • Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J Geophys Res Atmos 118:1716–1733

    Article  Google Scholar 

  • Slater AG, Lawrence DM (2013) Diagnosing present and future permafrost from climate models. J Clim 26:5608–5623

    Article  Google Scholar 

  • Stendel M, Christensen J (2002) Impact of global warming on permafrost conditions in a coupled GCM. Geophys Res Lett 29:1632. doi:10.1029/2001GL014345

    Article  Google Scholar 

  • Sui Y, Lang X, Jiang D (2015) Temperature and precipitation signals over China with a 2 °C global warming. Clim Res 64:227–242

    Article  Google Scholar 

  • Takata K, Emori S, Watanabe T (2003) Development of the minimal advanced treatments of surface interaction and runoff. Glob Planet Change 38:209–222

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteor Soc 93:485–498

    Article  Google Scholar 

  • Tjiputra JF, Roelandt C, Bentsen M, Lawrence DM, Lorentzen T, Schwinger J, Seland Ø, Heinze C (2013) Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM). Geosci Model Dev 6:301–325

    Article  Google Scholar 

  • UNFCCC (2010) The Cancun Agreements United Nations Framework Convention on Climate Change. http://unfccc.int/meetings/cancun nov 2010/meeting/6266.php

  • UNFCCC (2015) The Paris Agreements United Nations Framework Convention on Climate Change. http://unfccc.int/documentation/documents/advanced_search/items/6911.php?priref=600008831

  • Vautard R, Gobiet A, Sobolowski S, Kjellstrom E, Stegehuis A, Watkiss P, Mendlik T, Landgren O, Nikulin G, Teichmann C, Jacob D (2014) The European climate under a 2 °C global warming. Environ Res Lett 9:034006

    Article  Google Scholar 

  • Wang HJ, Sun JQ (2009) Variability of Northeast China River Break-up Date. Adv Atmos Sci 26:701–706

    Article  Google Scholar 

  • Wang HJ, Chen HP, Liu J (2015) Arctic sea ice decline intensified haze pollution in eastern China. Atmos Ocean Sci Lett 8:1–9

    Google Scholar 

  • Watanabe M, Suzuki T, O’ishi R, Komuro Y, Watanabe S, Emori S, Coauthors (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23:6312–6335

    Article  Google Scholar 

  • Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Coauthors (2011) MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci Model Dev 4:845–872

    Article  Google Scholar 

  • Wu QB, Zhang TJ (2008) Recent permafrost warming on the Qinghai-Tibetan Plateau. J Geophys Res 113:D13108. doi:10.1029/2007JD009539

    Article  Google Scholar 

  • Wu QB, Zhang TJ, Liu YZ (2010) Permafrost temperatures and thickness on the Qinghai-Tibet Plateau. Glob Planet Change 72:32–38

    Article  Google Scholar 

  • Xu XZ, Wang JC, Zhang LX (2010) Physics of frozen soil, 2nd edn. Science Press, Beijing, (in Chinese)

    Google Scholar 

  • Yang MX, Nelson F, Shiklomanov N, Guo DL, Wan G (2010) Permafrost degradation and its environmental effects on the Tibetan Plateau: a review of recent research. Earth-Sci Rev 103:31–44

    Article  Google Scholar 

  • Yang K, Wu H, Qin J, Lin C, Tang W, Chen Y (2014) Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review. Glob Planet Change 112:79–91

    Article  Google Scholar 

  • Yi S, Wang X, Qin Y, Xiang B, Ding Y (2014) Responses of alpine grassland on Qinghai–Tibetan plateau to climate warming and permafrost degradation: a modeling perspective. Environ Res Lett 9:074014

    Article  Google Scholar 

  • Yukimoto S, Adachi Y, Hosaka M, Sakami T, Yoshimura H, Hirabara M, Tanaka TY, Shindo E, Coauthors (2012) A new global climate model of the Meteorological Research Institute: MRI-CGCM3—model description and basic performance. J Meteorol Soc Japan 90A:23–64

    Article  Google Scholar 

  • Zhang Z, Wu Q (2012) Thermal hazards zonation and permafrost change over the Qinghai-Tibet Plateau. Nat hazard 61:403–423

    Article  Google Scholar 

  • Zhang T, Barry RG, Knowles K, Heginbottom JA, Brown J (1999) Statistics and characteristic of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geogr 23:132–154

    Article  Google Scholar 

  • Zhang T, Barry R, Gilichinsky D (2001) Russian historical soil temperature data, National Snow and Ice Data Center, Boulder, (digital media)

    Google Scholar 

  • Zhang T, Frauenfeld OW, Barry RG (2006) Time series of active layer thickness in the Russian Arctic, 1930–1990, National Snow and Ice Data Center, Boulder, (digital media)

    Google Scholar 

  • Zhang Y, Chen W, Riseborough DW (2008) Transient projections of permafrost distribution in Canada during the 21st century under scenarios of climate change. Glob Planet Change 60:443–456

    Article  Google Scholar 

  • Zhou BT, Wen QH, Xu Y, Song LC, Zhang XB (2014) Projected changes in temperature and precipitation extremes in China by the CMIP5 multi-model ensembles. J Clim 27:6591–6611

    Article  Google Scholar 

  • Zhou BT, Xu Y, Wu J, Dong S, Shi Y (2016) Changes in temperature and precipitation extreme indices over China: analysis of a high-resolution grid dataset. Int J Climatol 36:1051–1066

    Article  Google Scholar 

  • Zimov S, Schuur E, Chapin F III (2006) Permafrost and the global carbon budget. Science 312:1612–1613

    Article  Google Scholar 

Download references

Acknowledgements

This research was jointly supported by the National Key Research and Development Program of China (Grant No. 2016YFA0600704), the National Natural Science Foundation of China under Grants (41405087), the Open Research Fund Program of Plateau Atmosphere and Environment Key Laboratory of Sichuan Province under grant PAEKL-2016-K2, and the CAS-PKU Joint Research Program. Thanks are due to the Earth System Grid Federation (ESGF) that provided the CMIP5 simulation data (http://pcmdi9.llnl.gov/) and the National Snow & Ice data Center (NSIDC) that provided the Circum-Arctic map of permafrost and ground ice conditions (http://nsidc.org/data/docs/fgdc/ggd318_map_circumarctic/index.html). We are indebted to two reviewers for their constructive comments for the initial draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donglin Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, D., Wang, H. Permafrost degradation and associated ground settlement estimation under 2 °C global warming. Clim Dyn 49, 2569–2583 (2017). https://doi.org/10.1007/s00382-016-3469-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3469-9

Keywords

Navigation