Skip to main content

Advertisement

Log in

Role of aerosols in modulating cloud properties during active–break cycle of Indian summer monsoon

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In this study, the weather research and forecast model coupled with chemistry (WRF-Chem), is used to understand the impact of aerosol–cloud interaction during the active–break cycles of the Indian summer monsoon. Two sets of simulations are performed, one with a fixed aerosol concentration (ConstantAero) and the other with an observation-based prescription of the rate of change of aerosol concentration as a function of precipitation (VaryingAero). This prescription is derived based on satellite-retrieved daily rainrate and concurrent observations of aerosol optical depth from aerosol robotic network. The proposed modification is necessitated by the lack of realistic emission estimates over the Indian region as well as the presence of inherent biases in monsoon simulation in WRF-Chem. In the VaryingAero simulation, unlike in the ConstantAero run, we find that the break-to-active monsoon phase has more cloud liquid water (CLW) and less rain efficiency than in the active-to-break phase. This is primarily due to the indirect effect of increased aerosol loading in the break phase. This result is in accordance with the observed behaviour of CLW estimtes from microwave imager (TRMM 2A12) and radar reflectivity (TRMM precipitation radar). We also find that the proposed interactive aerosol loading results in higher spatial variability in CLW and enhances the likelihood of increased cloud cover via formation of larger clouds. The modification also alters the diurnal cycle of clouds in break and break-to-active phases as compared to other phases due to aerosol loading, with a stronger diurnal cycle of upper level clouds in these phases in the VaryingAero model as compared to ConstantAero model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abhik S, Halder M, Mukhopadhyay P, Jiang X, Goswami B (2013) A possible new mechanism for northward propagation of boreal summer intraseasonal oscillations based on trmm and merra reanalysis. Clim Dyn 40(7–8):1611–1624

    Article  Google Scholar 

  • Albrecht BA (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245:227–1230

    Article  Google Scholar 

  • Andreae MO (2009) Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions. Atmos Chem Phys 9(2):543–556. http://www.atmos-chem-phys.net/9/543/2009/

  • Bergman JW (1997) A numerical investigation of cloud diurnal variations. J Clim 10(9):2330–2350

    Article  Google Scholar 

  • Bhat G, Chakraborty A, Nanjundiah R, Srinivasan J (2002) Vertical thermal structure of the atmosphere during active and weak phases of convection over the north Bay of Bengal: observation and model results. Curr Sci 83(3):296–302

    Google Scholar 

  • Bhattacharya A, Chakraborty A, Venugopal V (2014) Variability of cloud liquid water and ice over South Asia from TMI estimates. Clim Dyn 42(9–10):2411–2421

    Article  Google Scholar 

  • Bollasina MA, Ming Y, Ramaswamy V (2011) Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 334(6055):502–505

    Article  Google Scholar 

  • Chakraborty A, Krishnamurti TN (2008) Improved forecasts of the diurnal cycle in the tropics using multiple global models. Part II: Asian summer monsoon. J Clim 21(16):4045–4067. doi:10.1175/2008JCLI2107.1

    Article  Google Scholar 

  • Chakraborty A, Satheesh S, Nanjundiah R, Srinivasan J (2004) Impact of absorbing aerosols on the simulation of climate over the Indian region in an atmospheric general circulation model. Ann Geophys Copernic Group 22:1421–1434

    Article  Google Scholar 

  • Chakraborty A, Krishnamurti TN, Gnanaseelan C (2007) Prediction of the diurnal cycle using a multimodel superensemble. Part II: clouds. Mon Weather Rev 135(12):4097–4116. doi:10.1175/2007MWR2080.1

    Article  Google Scholar 

  • Chapman EG, Gustafson WI Jr, Easter RC, Barnard JC, Ghan SJ, Pekour MS, Fast JD (2009) Coupling aerosol-cloud-radiative processes in the WRF-Chem model: Investigating the radiative impact of elevated point sources. Atmos Chem Phys 9(3):945–964. http://www.atmos-chem-phys.net/9/945/2009/

  • Chung CE, Ramanathan V, Kiehl JT (2002) Effects of the South Asian absorbing haze on the northeast monsoon and surface-air heat exchange. J Clim 15(17):2462–2476

    Article  Google Scholar 

  • Deshpande N, Goswami B (2014) Modulation of the diurnal cycle of rainfall over india by intraseasonal variations of indian summer monsoon. Int J Climatol 34(3):793–807

    Article  Google Scholar 

  • Dixon M, Wiener G (1993) Titan: thunderstorm identification, tracking, analysis, and nowcasting-a radar-based methodology. J Atmos Ocean Technol 10(6):785–797

    Article  Google Scholar 

  • Dubovik O, King MD (2000) A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements. J Geophys Res Atmos 105(D16):20673–20696. doi:10.1029/2000JD900282

    Article  Google Scholar 

  • Fujinami H, Yasunari T, Morimoto A (2014) Dynamics of distinct intraseasonal oscillation in summer monsoon rainfall over the Meghalaya–Bangladesh–western Myanmar region: covariability between the tropics and mid-latitudes. Clim Dyn 43(7–8):2147–2166

    Article  Google Scholar 

  • Ghan SJ, Easter RC, Chapman EG, Abdul-Razzak H, Zhang Y, Leung LR, Laulainen NS, Saylor RD, Zaveri RA (2001) A physically based estimate of radiative forcing by anthropogenic sulfate aerosol. J Geophys Res Atmos 106(D6):5279–5293. doi:10.1029/2000JD900503

    Article  Google Scholar 

  • Goswami B, Venugopal V, Sengupta D, Madhusoodanan M, Xavier PK (2006) Increasing trend of extreme rain events over india in a warming environment. Science 314(5804):1442–1445. doi:10.1126/science.1132027

    Article  Google Scholar 

  • Goswami BN (2005) South Asian monsoon, 2nd edn. Springer, Chichester

    Google Scholar 

  • Govardhan G, Nanjundiah R, Satheesh S, Krishnamoorthy K, Kotamarthi V (2015) Performance of WRF-Chem over Indian region: comparison with measurements. J Earth Syst Sci 124(4):875–896. doi:10.1007/s12040-015-0576-7

    Article  Google Scholar 

  • Grell GA, Peckham SE, Schmitz R, McKeen SA, Frost G, Skamarock WC, Eder B (2005) Fully coupled ”online” chemistry within the WRF model. Atmos Environ 39(37):6957–6975. http://www.sciencedirect.com/science/article/pii/S1352231005003560

  • Guo L, Turner AG, Highwood EJ (2015) Impacts of 20th century aerosol emissions on the south asian monsoon in the cmip5 models. Atmos Chem Phys 15(11):6367–6378

    Article  Google Scholar 

  • Hahmann AN, Vincent CL, Pea A, Lange J, Hasager CB (2014) Wind climate estimation using WRF model output: method and model sensitivities over the sea. Int J Climatol. doi:10.1002/joc.4217

    Google Scholar 

  • Hazra A, Goswami B, Chen JP (2013) Role of interactions between aerosol radiative effect, dynamics, and cloud microphysics on transitions of monsoon intraseasonal oscillations. J Atmos Sci 70(7):2073–2087

    Article  Google Scholar 

  • Jiang X, Waliser DE, Li JL, Woods C (2011) Vertical cloud structures of the boreal summer intraseasonal variability based on cloudsat observations and era-interim reanalysis. Clim Dyn 36(11–12):2219–2232

    Article  Google Scholar 

  • Karmakar N, Chakraborty A, Nanjundiah RS (2015) Decreasing intensity of monsoon low-frequency intraseasonal variability over india. Environ Res Lett 10(5):054,018

    Article  Google Scholar 

  • Kiran VR, Rajeevan M, Rao SVB, Rao NP (2009) Analysis of variations of cloud and aerosol properties associated with active and break spells of indian summer monsoon using MODIS data. Geophys Res Lett. doi:10.1029/2008gl037135

    Google Scholar 

  • Krishna Moorthy K, Suresh Babu S, Manoj MR, Satheesh SK (2013) Buildup of aerosols over the Indian region. Geophys Res Lett 40(5):1011–1014. doi:10.1002/grl.50165

    Article  Google Scholar 

  • Krishnamurti T, Kishtawal C (2000) A pronounced continental-scale diurnal mode of the Asian summer monsoon. Mon Weather Rev 128(2):462–473

    Article  Google Scholar 

  • Lau K, Kim M, Kim K (2006) Aerosol induced anomalies in the Asian summer monsoon: the role of the Tibetan Plateau. Clim Dyn 26(7–8):855–864

    Article  Google Scholar 

  • Liu J, Li Z (2014) Estimation of cloud condensation nuclei concentration from aerosol optical quantities: influential factors and uncertainties. Atmos Chem Phys 14(1):471–483. http://www.atmos-chem-phys.net/14/471/2014/

  • Menon S, Hansen J, Nazarenko L, Luo Y (2002) Climate effects of black carbon aerosols in China and India. Science 297(5590):2250–2253

    Article  Google Scholar 

  • Rajeevan M, Rohini P, Niranjan Kumar K, Srinivasan J, Unnikrishnan CK (2012) A study of vertical cloud structure of the Indian summer monsoon using CloudSat data. Clim Dyn 40(3–4):637–650

    Google Scholar 

  • Sahany S, Venugopal V, Nanjundiah RS (2010) Diurnal-scale signatures of monsoon rainfall over the Indian region from trmm satellite observations. J Geophys Res Atmos 115:D02103. doi:10.1029/2009JD012644

    Article  Google Scholar 

  • Satheesh S, Ramanathan V (2000) Large differences in tropical aerosol forcing at the top of the atmosphere and earth’s surface. Nature 405(6782):60–63

    Article  Google Scholar 

  • Sawamura P, Müller D, Hoff RM, Hostetler CA, Ferrare RA, Hair JW, Rogers RR, Anderson BE, Ziemba LD, Beyersdorf AJ, Thornhill KL, Winstead EL, Holben BN (2014) Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar data set discover-aq 2011. Atmos Meas Tech 7(9):3095–3112. doi:10.5194/amt-7-3095-2014

    Article  Google Scholar 

  • Sikka D, Gadgil S (1980) On the maximum cloud zone and the ITCZ over Indian, longitudes during the southwest monsoon. Mon Weather Rev 108(11):1840–1853

    Article  Google Scholar 

  • Singh C, Thomas L, Kumar K (2015) Impact of aerosols and cloud parameters on indian summer monsoon rain at intraseasonal scale: a diagnostic study. Theor Appl Climatol. doi:10.1007/s00704-015-1640-6

    Google Scholar 

  • Singh P, Nakamura K (2010) Diurnal variation in summer monsoon precipitation during active and break periods over central india and southern himalayan foothills. J Geophys Res Atmos 115:D12122. doi:10.1029/2009JD012794

    Article  Google Scholar 

  • Twomey S, Piepgrass M, Wolfe T (1984) An assessment of the impact of pollution on global cloud albedo. Tellus B 36:356–366

    Article  Google Scholar 

  • Vinoj V, Rasch PJ, Wang H, Yoon JH, Ma PL, Landu K, Singh B (2014) Short-term modulation of Indian summer monsoon rainfall by West Asian dust. Nat Geosci 7(4):308–313

    Article  Google Scholar 

  • Yasunari T (1981) Structure of an Indian summer monsoon system with around 40-day period. J Meteorol Soc Jpn 59:336–354

    Article  Google Scholar 

  • Zaveri RA, Easter RC, Fast JD, Peters LK (2008) Model for simulating aerosol interactions and chemistry (MOSAIC). J Geophys Res Atmos. doi:10.1029/2007JD008782

    Google Scholar 

Download references

Acknowledgements

AC and VV acknowledge MoES for funding this research. We acknowledge AERONET Team for the valuable data used in this research. We acknowledge data provider of tropical precipitation measuring mission (TRMM) product (3B42) and (TRMM) product (2A25). Analyses and visualizations used in this paper were produced with the Giovanni online data system, developed and maintained by the NASA GES DISC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bhattacharya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 323 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, A., Chakraborty, A. & Venugopal, V. Role of aerosols in modulating cloud properties during active–break cycle of Indian summer monsoon. Clim Dyn 49, 2131–2145 (2017). https://doi.org/10.1007/s00382-016-3437-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3437-4

Keywords

Navigation