Skip to main content

Advertisement

Log in

Increased tree-ring network density reveals more precise estimations of sub-regional hydroclimate variability and climate dynamics in the Midwest, USA

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Understanding the historic variability in the hydroclimate provides important information on possible extreme dry or wet periods that in turn inform water management plans. Tree rings have long provided historical context of hydroclimate variability of the U.S. However, the tree-ring network used to create these countrywide gridded reconstructions is sparse in certain locations, such as the Midwest. Here, we increase (n = 20) the spatial resolution of the tree-ring network in southern Indiana and compare a summer (June–August) Palmer Drought Severity Index (PDSI) reconstruction to existing gridded reconstructions of PDSI for this region. We find both droughts and pluvials that were previously unknown that rival the most intense PDSI values during the instrumental period. Additionally, historical drought occurred in Indiana that eclipsed instrumental conditions with regard to severity and duration. During the period 1962–2004 CE, we find that teleconnections of drought conditions through the Atlantic Meridional Overturning Circulation have a strong influence (r = −0.60, p < 0.01) on secondary tree growth in this region for the late spring-early summer season. These findings highlight the importance of continuing to increase the spatial resolution of the tree-ring network used to infer past climate dynamics to capture the sub-regional spatial variability. Increasing the spatial resolution of the tree-ring network for a given region can better identify sub-regional variability, improve the accuracy of regional tree-ring PDSI reconstructions, and provide better information for climatic teleconnections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  • Abrams MD (1992) Fire and the development of oak forests. Bioscience 42:346–353

    Article  Google Scholar 

  • Andresen J, Hilberg S, Kunkel K (2012) Historical climate and climate trends in the Midwestern USA. In: Winkler J, Andresen J, Hatfield J, Bidwell D and Brown D coordinators US national climate assessment midwest technical input report. pp 1–18. Available from the Great Lakes Integrated Sciences and Assessments (GLISA) Center, http://glisa.msu.edu/docs/NCA/MTIT_Historical.pdf

  • Biondi F, Waikul K (2004) DENDROCLIM2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30:303–311. doi:10.1016/j.cageo.2003.11.004

    Article  Google Scholar 

  • Bryden HL, Longworth HR, Cunningham SA (2005) Slowing of the Atlantic Meridional Overturning Circulation at 25 degrees N. Nature 438:655–657. doi:10.1038/nature04385

    Article  Google Scholar 

  • Clark PU, Weaver AJ, Brook E, Cook ER, Delworth TL, Steffen K (2008) Introduction. In: Abrupt climate change. A Report by the U.S. climate change science program and the Subcommittee on global change research. U.S. Geological Survey, Reston, pp 19–59

  • Clement A, Bellomo K, Murphy LN, Cane MA, Mauritsen T, Rädel G, Stevens B (2015) The Atlantic Multidecadal Oscillation without a role for ocean circulation. Science 350:320–324. doi:10.1126/science.aab3980

    Article  Google Scholar 

  • Cole JE, Overpeck JT, Cook ER (2002) Multiyear La Niña events and persistent drought in the contiguous United States. Geophys Res Lett 29:1647. doi:10.1029/2001GL013561

    Article  Google Scholar 

  • Cook ER, Pederson N (2011) Uncertainty, emergence, and statistics in dendrochronology. In: Dendroclimatology. Springer, Netherlands, pp 77–112

  • Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-ring Bull 41:45–53

    Google Scholar 

  • Cook ER, Meko DM, Stahle DW (1999) Drought reconstructions for the continental U.S. J Clim 12:1145–1161. doi:10.1175/1520-0442(1999)012<1145:DRFTCU>2.0.CO;2

    Article  Google Scholar 

  • Cook ER, Seager R, Heim RR, Vose RS, Herweijer C, Woodhouse C (2010) Megadroughts in North America: placing IPCC projections of hydroclimatic change in a long-term palaeoclimate context. J Quat Sci 25:48–61. doi:10.1002/jqs.1303

    Article  Google Scholar 

  • Delworth TL, Clark PU, Holland M, Johns T, Kuhlbrodt T, Lynch-Stieglitz C, Seager R, Weaver AJ, Zhang R (2008) The potential for abrupt change in the Atlantic Meridional Overturning Circulation. In: Abrupt climate change. A report by the U.S. climate change science program and the subcommittee on global change research. pp 258–359

  • Dima M, Lohmann G (2010) Evidence for two distinct modes of large-scale ocean circulation changes over the last century. J Clim 23:5–16. doi:10.1175/2009JCLI2867.1

    Article  Google Scholar 

  • Drijfhout S, Van Oldenborgh GJ, Cimatoribus A (2012) Is a decline of AMOC causing the warming hole above the North Atlantic in observed and modeled warming patterns? J Clim 25:8373–8379. doi:10.1175/JCLI-D-12-00490.1

    Article  Google Scholar 

  • Duchez A, Hirschi JM, Cunningham SA, Blaker AT, Bryden HL, de Cuevas B, Atkinson CP, McCarthy GD, Frajka-Williams E, Rayner D, Smeed D, Mizielinski MS (2014) A new index for the Atlantic meridional overturning circulation at 26°N. J Clim 27:6439–6455. doi:10.1175/JCLI-D-13-00052.1

    Article  Google Scholar 

  • Ebinger JE (1997) Forest communities of the midwestern United States. In: Conservation in highly fragmented landscapes. Springer, New York, pp 3–23

  • Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28:2077–2080

    Article  Google Scholar 

  • Ford TW (2014) Precipitation anomalies in Eastern-Central Iowa from 1640–present. J Hydrol 519:918–924. doi:10.1016/j.jhydrol.2014.08.021

    Article  Google Scholar 

  • Frank D, Esper J (2005) Temperature reconstructions and comparisons with instrumental data from a tree-ring network for the European Alps. Int J Climatol 25:1437–1454. doi:10.1002/joc.1210

    Article  Google Scholar 

  • Franzmeier DP, Steinhardt GC, Schulze DG (2004) Indiana soil and landscapes evaluation manual. Department of Agronomy, Purdue University, West Lafayette

    Google Scholar 

  • Fritts H (1976) Tree-rings and climate. Academic Press, New York

    Google Scholar 

  • Fye FK, Stahle DW, Cook ER, Cleaveland MK (2006) NAO influence on sub-decadal moisture variability over central North America. Geophys Res Lett 33:L15707. doi:10.1029/2006GL026656

    Article  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-ring Bull 43:69–78

    Google Scholar 

  • International Tree Ring Data Bank (2015) World data center for Paleoclimatology, NOAA/NCDC Paleoclimatology Program, Boulder, Colo. “https://www.ncdc.noaa.gov/paleo/study/3016

  • Karl TR, Knight RW, Easterling DR, Quayle RG (1996) Indices of climate change for the United States. B Am Meteorol Soc 77:279–292. doi:10.1175/1520-0477(1996)077<0279:IOCCFT>2.0.CO;2

    Article  Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. B Am Meteorol Soc 78:1069–1079. doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2

    Article  Google Scholar 

  • Maxwell JT (2016) The benefit of including rarely-used species in dendroclimatic reconstructions: a case study using Juglans nigra in South-Central Indiana, USA. Tree-ring Res 72:44–52. doi:10.3959/1536-1098-72.01.44

    Article  Google Scholar 

  • Maxwell JT, Harley GL, Matheus TJ (2015) Dendroclimatic reconstructions from multiple co-occurring species: a case study from an old-growth deciduous forest in Indiana, USA. Int J Climatol 35:860–870. doi:10.1002/joc.4021

    Article  Google Scholar 

  • Maxwell JT, Harley GL, Robeson RM (2016) On the declining relationship between tree growth and climate in the Midwest United States: the fading drought signal. Clim Change. doi:10.1007/s10584-016-1720-3

    Google Scholar 

  • Meko DM (1997) Dendroclimatic reconstruction with time varying subsets of tree indices. J Clim 10:1069–1079. doi:10.1175/1520-0442(1997)010<0687:DRWTVP>2.0.CO;2

    Article  Google Scholar 

  • Melvin TM, Briffa KR (2008) A “signal-free” approach to dendroclimatic standardisation. Dendrochronologia 26:71–86. doi:10.1016/j.dendro.2007.12.001

    Article  Google Scholar 

  • Mishra V, Cherkauer KA (2010) Retrospective droughts in the crop growing season: implications to corn and soybean yield in the Midwestern United States. Agric For Meteorol 150:1030–1045. doi:10.1016/j.agrformet.2010.04.002

    Article  Google Scholar 

  • Nash JE, Sultcliffe JV (1971) Riverflow forecasting through conceptual models: a discussion of principles. J Hydrol 10:282–290. doi:10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Palmer W (1965) Meteorological drought. Weather bureau research paper 45. Department of Commerce, Washington

    Google Scholar 

  • Pederson N (2010) External characteristics of old trees in the Eastern Deciduous Forest. Nat Area J 30:396–407. doi:10.3375/043.030.0405

    Article  Google Scholar 

  • Pederson N, Cook ER, Jacoby GC, Peteet DM, Griffin KL (2004) The influence of winter temperatures on the annual radial growth of six northern range margin tree species. Dendrochronologia 22:7–29. doi:10.1016/j.dendro.2004.09.005

    Article  Google Scholar 

  • Pederson N, Bell AR, Knight TA, Leland C, Malcomb N, Anchukaitis KJ, Tackett K, Scheff J, Brice A, Catron B, Blozan W, Riddle J (2012) A long-term perspective on a modern drought in the American Southeast. Environ Res Lett 7:1–8. doi:10.1088/1748-9326/7/1/014034

    Article  Google Scholar 

  • Pederson N, Bell AR, Cook ER, Lall U, Devineni N, Seager R, Eggleston K, Vranes KP (2013) Is an epic pluvial masking the water insecurity of the greater New York city region? J Clim 26:1339–1350. doi:10.1175/JCLI-D-11-00723.1

    Article  Google Scholar 

  • Phillips J, Rajagopalan B, Cane M, Rosenzweig C (1999) The role of ENSO in determining climate and maize yield variability in the US cornbelt. Int J Climatol 19:877–888. doi:10.1002/(SICI)1097-0088(19990630)19:8<877:AID-JOC406>3.0.CO;2-Q

    Article  Google Scholar 

  • Rahmstorf S, Feulner G, Mann ME, Robinson A, Rutherford S, Schaffernicht EJ (2015) Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat Clim Change 5:475–480. doi:10.1038/NCLIMATE2554

    Article  Google Scholar 

  • Rhemtulla JM, Mladenoff DJ, Clayton MK (2007) Regional land-cover conversion in the US upper Midwest: magnitude of change and limited recovery (1850–1935–1993). Landsc Ecol 22:57–75. doi:10.1007/s10980-007-9117-3

    Article  Google Scholar 

  • Richman MB (1986) Rotation of principal components. J Climatol 6:293–335

    Article  Google Scholar 

  • Rodionov SN (2004) A sequential algorithm for testing climate regime shifts. Geophys Res Lett 31:L09204. doi:10.1029/2004GL019448

    Article  Google Scholar 

  • Schulman E (1954) Longevity under adversity in conifers. Science 119:396–399

    Article  Google Scholar 

  • Speer JH (2010) Fundamentals of tree-ring research. The University of Arizona Press, Tucson Arizona

    Google Scholar 

  • Stambaugh MC, Guyette RP, McMurry ER, Cook ER, Meko DM, Lupo AR (2011) Drought duration and frequency in the U.C. Corn Belt during the last millennium (AD 922–2004). Agric For Meteorol 151:154–162. doi:10.1016/j.agrformet.2010.09.010

    Article  Google Scholar 

  • Stokes MA, Smiley TL (1968) An Introduction to tree-ring dating. University of Chicago Press, Chicago

    Google Scholar 

  • Stouffer RJ, Yin J, Gregory JM, Dixon KW, Spelman MJ, Hurlin W, Weaver AJ, Eby M, Flato GM, Hasumi H, Hu A (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19:1365–1387. doi:10.1175/JCLI3689.1

    Article  Google Scholar 

  • Thompson DW, Wallace JM, Kennedy JJ, Jones PD (2010) An abrupt drop in Northern Hemisphere sea surface temperature around 1970. Nature 467:444–447. doi:10.1038/nature09394

    Article  Google Scholar 

  • Van der Schrier G, Briffa KR, Osborn TJ, Cook ER (2006) Summer moisture availability across North America. J Geophys Res-Atmos 111:D11102. doi:10.1029/2005JD006745

    Article  Google Scholar 

  • Wigley TM, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213. doi:10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2

    Article  Google Scholar 

  • Zhang R (2007) Anticorrelated multidecadal variations between surface and subsurface tropical North Atlantic. Geophys Res Lett 34:L12713. doi:10.1029/2007GL030225

    Article  Google Scholar 

  • Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900-93. J Clim 10:1004–1020

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Indiana Department of Natural Resources, the US Forest Service, and the Nature Conservancy for access to sites. Thank you to Kayla Pendergrass and Trevis Matheus for help in the field and laboratory; Karly Schmidt, Matt Wenzel, Nick Batchos, James Dickson, and Luke Wiley for help in the field; and Jessica Ayers and Chris Speagle for help in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin T. Maxwell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 63 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maxwell, J.T., Harley, G.L. Increased tree-ring network density reveals more precise estimations of sub-regional hydroclimate variability and climate dynamics in the Midwest, USA. Clim Dyn 49, 1479–1493 (2017). https://doi.org/10.1007/s00382-016-3396-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3396-9

Keywords

Navigation