Skip to main content

Advertisement

Log in

Impact of tropical convection and ENSO variability in vertical distributions of CO and O3 over an urban site of India

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study is based on the analysis of the measurement of ozone and water vapor by airbus in-service aircraft (MOZAIC) data of vertical ozone (O3) and carbon monoxide (CO) over Hyderabad during November 2005–March 2009. Measurements in the upper troposphere show highest values of O3 (53–75 ppbv) and CO (80–110 ppbv) during the pre-monsoon and post-monsoon seasons, respectively. The episodes of strong wind shears (>20 ms−1) were frequent during the monsoon/post-monsoon months, while weak shear conditions (<10 ms−1) were prevalent during the winter season. The profiles of both O3 and CO measured under southerly winds showed lower values than under northerly winds in each season. The strong and weak wind shears over the study region were associated with the El Niño and La Niña conditions, respectively. The outgoing long-wave radiation (OLR) and wind shear data indicate enhancement in the convective activity from monsoon to post-monsoon period. Higher levels of O3 were measured under the strong shear conditions, while CO and H2O show enhancements under weak shear conditions. The near surface observation and simulations show increase of O3 with increasing OLR, while insignificant relation in the upper region. In case of CO, the MOZAIC and CCM2 show weaker dependence while MOZART-4 shows rapid increase with OLR indicating large overestimation of convective transport. A modified Tiedtke convective scheme provides better representation compared to the Hack/Zhang-McFarlane schemes for both O3 and CO during the monsoon season. The difference between observation and simulations were particularly large during transition from El Niño to La Niña phases. The different convection scheme and horizontal resolution in the MOZART-4 and CCM2 seem to be the major causes of disagreement between these models. Vertical profiles of both O3 and CO during extreme events such a tropical cyclones (TCs) show strong influence of the convective-dynamics over Bay of Bengal (BOB).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Avery M et al (2010) Convective distribution of tropospheric ozone and tracers in the Central American ITCZ region: evidence from observations during TC4. J Geophys Res 115:D00J21. doi:10.1029/2009JD013450

    Article  Google Scholar 

  • Baker AK, Schuck TJ, Slemr F, van Velthoven P, Zahn A, Brenninkmeijer CAM (2011) Characterization of nonmethane hydrocarbons in Asian summer monsoon outflow observed by the CARIBIC aircraft. Atmos Chem Phys 11:503–518. doi:10.5194/acp-11-503-2011

    Article  Google Scholar 

  • Bansod SD (2011) Interannual variability of convective activity over the tropical Indian Ocean during the El Niño/La Niña events. Int J Remote Sens 32(19):5565–5582

    Article  Google Scholar 

  • Barret B, Le Flochmoen E, Sauvage B, Pavelin E, Matricardi M, Cammas JP (2011) The detection of post-monsoon tropospheric ozone variability over south Asia using IASI data. Atmos Chem Phys 11:9533–9548. doi:10.5194/acp-11-9533-2011

    Article  Google Scholar 

  • Bourassa A, Robock A, Randel W, Deshler T, Rieger L, Lloyd N, Llewellyn EJ, Degenstein D (2012) Large volcanic aerosol load in the stratosphere linked to Asian monsoon transport. Science 337:78–81. doi:10.1126/science.1219371

    Article  Google Scholar 

  • Chandra S, Ziemke JR, Min W, Read WG (1998) Effects of 1997–1998 El Ni˜no on tropospheric ozone and water vapor. Geophys Res Lett 25:3867–3870

    Article  Google Scholar 

  • Chandra S, Ziemke JR, Duncan BN, Diehl TL, Livesey NJ, Froidevaux L (2009) Effects of the 2006 El Niño on tropospheric ozone and carbon monoxide: implications for dynamics and biomass burning. Atmos Chem Phys 9:4239–4249. doi:10.5194/acp-9-4239-2009

    Article  Google Scholar 

  • Choi Y, Wang YH, Zeng T, Martin RV, Kurosu TP, Chance K (2005) Evidence of lightning NOx and convective transport of pollutants in satellite observations over North America. Geophys Res Lett 32:L02805. doi:10.1029/2004gl021436

    Google Scholar 

  • Clarke AJ, Van Gorder S (2003) Improving El Ni˜no prediction using a space-time integration of Indo-Pacific winds and equatorial Pacific upper ocean heat content. Geophys Res Lett 30:1399. doi:10.1029/2002GL016673

    Google Scholar 

  • Deushi M, Shibata K (2011) Development of an MRI Chemistry-Climate Model ver.2 for the study of tropospheric and stratospheric chemistry. Pap Meteorol Geophys 62:1–46

    Article  Google Scholar 

  • Devasthale A, Fueglistaler S (2010) A climatological perspective of deep convection penetrating the TTL during the Indian summer monsoon from the AVHRR and MODIS instruments. Atmos Chem Phys 10:4573–4582. doi:10.5194/acp-10-4573-2010

    Article  Google Scholar 

  • Emmons LK et al (2010) Description and evaluation of the model for ozone and related chemical Tracers, version 4 (MOZART-4). Geosci Model Dev 3:43–67. doi:10.5194/gmd-3-43-2010

    Article  Google Scholar 

  • Folkins I, Martin RV (2005) The vertical structure of tropical convection, and its impact on the budgets of water vapor and ozone. J Atmos Sci 62:1560–1573

    Article  Google Scholar 

  • Folkins I, Braun CA, Thompson M, Witte J (2002) Tropical ozone as an indicator of deep convection. J Geophys Res Atmos 107(D13):4184. doi:10.1029/2001JD001178

    Article  Google Scholar 

  • Girishkumar MS, Ravichandran M (2012) The influences of ENSO on tropical cyclone activity in the Bay of Bengal during October–December. J Geophys Res 117:C02033. doi:10.1029/2011JC007417

    Article  Google Scholar 

  • Granier C et al (2005) POET—a database of surface emissions of ozone precursors. http://www.aero.jussieu.fr/project/ACCENT/POET.php. Accessed 26 Feb 13

  • Granier C, Bessagnet B, Bond T, Angiola DA, van der Gon DH, Frost JG, Heil A, Kaiser WJ, Kinne S, Klimont Z (2011) Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Clim Change 109:163–190. doi:10.1007/s10584-011-110154-1

    Article  Google Scholar 

  • Guttikunda SK, Kopakka RV, Dasari P, Gertler AW (2013) Receptor model-based source apportionment of particulate pollution in Hyderabad, India. Environ Monit Assess 185(7):5585–5593. doi:10.1007/s10661-012-2969-2

    Article  Google Scholar 

  • Hack JJ (1994) Parameterization of moist convection in the National Center for Atmospheric Research community climate model (CCM2). J Geophys Res Atmos 99:5551–5568. doi:10.1029/93JD03478

    Article  Google Scholar 

  • James R, Bonazzola M, Legras B, Surbled K, Fueglistaler S (2008) Water vapor transport and dehydration above the convective outflow during Asian monsoon. Geophys Res Lett 35:L20810. doi:10.1029/2008GL035441

    Article  Google Scholar 

  • Kobayashi S et al (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn 93:5–48. doi:10.2151/jmsj.2015-001

    Article  Google Scholar 

  • Lamarque JF et al (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10:7017–7039. doi:10.5194/acp-10-7017-2010

    Article  Google Scholar 

  • Lawrence MG, Lelieveld J (2010) Atmospheric pollutant outflow from southern Asia: a review. Atmos Chem Phys 10:11017–11096. doi:10.5194/acp-10-11017-2010

    Article  Google Scholar 

  • Lelieveld J, Crutzen PJ (1994) Role of deep cloud convection in the ozone budget of the troposphere. Science 264:1759–1761

    Article  Google Scholar 

  • Logan JA, Megretskaia I, Nassar R, Murray LT, Zhang L, Bowman KW, Worden HM, Luo M (2008) Effects of the 2006 El Nino on tropospheric composition as revealed by data from the Tropospheric Emission Spectrometer (TES). Geophys Res Lett 35:L03816. doi:10.1029/2007GL031698

    Article  Google Scholar 

  • Nassar R, Logan JA, Megretskaia IA, Murray LT, Zhang L, Jones DBA (2009) Analysis of tropical tropospheric ozone, carbon monixde, and water vapor during the 2006 El Nino using TES observations and the GEOS-Chem model. J Geophys Res 114:D17304. doi:10.1029/2009JD011760

    Article  Google Scholar 

  • Nedelec P, Cammas JP, Thouret V (2003) An improved infrared carbon monoxide analyzer for routine measurements aboard commercial Airbus aircraft: technical validation and first scientific results of the MOZAIC III program. Atmos Chem Phys 3:1551–1564

    Article  Google Scholar 

  • Ohara T, Akimoto H, Kurokawa J, Horii N, Yamaji K, Yan X, Hayasaka T (2007) An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos Chem Phys 7:4419–4444. doi:10.5194/acp-7-4419-2007

    Article  Google Scholar 

  • Olivier JGJ, VanAardenne JA, Dentener F, Pagliari V, Ganzeveld LN, Peters JAHW (2005) Recent trends in global greenhouse gas emissions: regional trends 1970–2000 and spatial distribution of key sources in 2000. Environ Sci 2(2–3):81–99

    Article  Google Scholar 

  • Onogi K et al (2007) The JRA-25 reanalysis. J Meteorol Soc Jpn 85:369–432

    Article  Google Scholar 

  • Park M, Randel WJ, Gettelman A, Massie ST, Jiang JH (2007) Transport above the Asian summer monsoon anticyclone inferred from Aura MLS tracers. J Geophys Res 112:D16309. doi:10.1029/2006JD008294

    Article  Google Scholar 

  • Park M, Randel WJ, Emmons LK, Bernath PF, Walker KA, Boone CD (2008) Chemical isolation in the Asian monsoon anticyclone observed in Atmospheric Chemistry Experiment (ACE-FTS) data. Atmos Chem Phys 8:757–764. doi:10.5194/acp-8-757-2008

    Article  Google Scholar 

  • Pickering KE, Thompson AM, Scala JR, Tao WK, Dickerson RR, Simpson J (1992) Free tropospheric ozone production following entrainment of urban plumes into deep convection. J Geophys Res 97:17985–18000

    Article  Google Scholar 

  • Randel WJ, Jensen EJ (2013) Physical processes in the tropical tropopause layer and their role in a changing climate. Nat Geosci 6:169–176. doi:10.1038/ngeo1733

    Article  Google Scholar 

  • Randel WJ, Park M (2006) Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS). J Geophys Res 111:D12314. doi:10.1029/2005jd006490

    Article  Google Scholar 

  • Randel WJ, Park M, Emmons L, Kinnison D, Bernath P, Walker P, Boone C, Pumphrey H (2010) Asian monsoon transport of pollution to the stratosphere. Science 328:611–613. doi:10.1126/science.1182274

    Article  Google Scholar 

  • Rybka H, Tost H (2014) Uncertainties in future climate predictions due to convection parameterisations. Atmos Chem Phys 14:5561–5576. doi:10.5194/acp-14-5561-2014

    Article  Google Scholar 

  • Sahu LK, Lal S (2006a) Changes in surface ozone levels due to convective downdrafts over the Bay of Bengal. Geophys Res Lett 33:L10807. doi:10.1029/2006GL025994

    Article  Google Scholar 

  • Sahu LK, Lal S (2006b) Characterization of C2-C4 NMHCs distributions at a high altitude tropical site in India. J Atmos Chem 54:161–175

    Article  Google Scholar 

  • Sahu LK, Saxena P (2015) High time and mass resolved PTR-TOF-MS measurements of VOCs at an urban site of India during winter: role of anthropogenic, biomass burning, biogenic and photochemical sources. Atmos Res 164–165:84–94

    Article  Google Scholar 

  • Sahu LK, Lal S, Thouret V, Smit HG (2009) Seasonality of tropospheric ozone and water vapor over Delhi, India: a study based on MOZAIC measurement data. J Atmos Chem 63:151–174

    Article  Google Scholar 

  • Sahu LK, Lal S, Thouret V, Smit HG (2011) Climatology of tropospheric ozone and water vapour over Chennai: a study based on MOZAIC measurements over India. Int J Climatol 31:920–936. doi:10.1002/joc.2128

    Article  Google Scholar 

  • Sahu LK, Sheel V, Kajino M, Deushi M, Gunthe SS, Sinha PR, Sauvage B, Thouret V, Smit HG (2014) Seasonal and interannual variability of tropospheric ozone over an urban site in India: a study based on MOZAIC and CCM vertical profiles over Hyderabad. J Geophys Res Atmos 119:3615–3641. doi:10.1002/2013JD021215

    Article  Google Scholar 

  • Sahu LK, Yadav R, Pal D (2016) Source identification of VOCs at an urban site of western India: effect of marathon events and anthropogenic emissions. J Geophys Res Atmos 121:2416–2433. doi:10.1002/2015JD024454

    Article  Google Scholar 

  • Sankar S, Kumar MRR, Reason C (2011) On the relative roles of El Niño and Indian Ocean Dipole events on the monsoon onset over Kerala. Theor Appl Climatol 103:359–374

    Article  Google Scholar 

  • Sauvage B, Martin RV, Van Donkelaar A, Liu X, Chance K, Jaegl L, Palmer PI, Wu S, Fu TM (2007) Remote sensed and in situ constraints on processes affecting tropical tropospheric ozone. Atmos Chem Phys 7:815–838. doi:10.5194/acp-7-815-2007

    Article  Google Scholar 

  • Scheeren HA et al (2003) The impact of monsoon outflow from India and Southeast Asia in the upper troposphere over the eastern Mediterranean. Atmos Chem Phys 3:1589–1608

    Article  Google Scholar 

  • Schultz MG, Bey I (2004) Numerical modelling of long-range pollution transport. The handbook of environmental chemistry. Springer, New York, pp 198–220

    Google Scholar 

  • Sheel V, Sahu LK, Kajino M, Deushi M, Stein O, Nedelec P (2014) Seasonal and interannual variability of carbon monoxide based on MOZAIC observations, MACC reanalysis, and model simulations over an urban site in India. J Geophys Res Atmos 119:9123–9141. doi:10.1002/2013JD021425

    Article  Google Scholar 

  • Sherwood SC, Dessler AE (2003) Convective mixing near the tropical tropopause: insights from seasonal variations. J Atmos Sci 60:2674–2685

    Article  Google Scholar 

  • Sinha PR, Manchanda RK, Kaskaoutis DG, Kumar YB, Sreenivasan S (2013) Seasonal variation of surface and vertical profile of aerosol properties over a tropical urban station Hyderabad, India. J Geophys Res Atmos 118:749–768. doi:10.1029/2012JD018039

    Article  Google Scholar 

  • Sinnhuber BM, Folkins I (2006) Estimating the contribution of bromoform to stratospheric bromine and its relation to dehydration in the tropical tropopause layer. Atmos Chem Phys 6:4755–4761. doi:10.5194/acp-6-4755-2006

    Article  Google Scholar 

  • Thompson AM, Witte JC, Hudson RD, Guo H, Herman JR, Fujiwara M (2001) Tropical tropospheric ozone and biomass burning. Science 291:2128–2132

    Article  Google Scholar 

  • Thouret V, Marenco A, Nedelec P, Grouhel C (1998a) Ozone climatologies at 9-12 km altitude as seen by the MOZAIC airborne program between September 1994 and August 1996. J Geophys Res 103(25):653–679

    Google Scholar 

  • Thouret V, Marenco A, Logan JA, Nedelec P, Grouhel C (1998b) Comparisons of ozone measurements from the MOZAIC airborne program and the ozone sounding network at eight locations. J Geophys Res 103(25):695–720

    Google Scholar 

  • Van der Werf GR et al (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural and peat fires (1997–2009). Atmos Chem Phys 10:11707–11735. doi:10.5194/acp-10-11707-2010

    Article  Google Scholar 

  • Yadav R, Sahu LK, Jaaffrey SNA, Beig G (2014) Distributions of ozone and related trace gases at an urban site in western India. J Atmos Chem 71:125–144

    Article  Google Scholar 

  • Yoshimura H, Yukimoto S (2008) Development of a simple coupler (Scup) for earth system modeling. Pap Meteorol Geophys 59:19–29

    Article  Google Scholar 

  • Yoshimura H, Mizuta R, Murakami H (2015) A spectral cumulus parameterization scheme interpolating between two convective updrafts with semi-Lagrangian calculation of transport by compensatory subsidence. Mon Weather Rev 143:597–621

    Article  Google Scholar 

  • Yukimoto S et al (2011) Meteorological Research Institute Earth System Model Version 1 (MRI-ESM1)—model description. Tech Rep MRI 64:83

    Google Scholar 

  • Zhang GJ, McFarlane NA (1995) Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate center general-circulation model. Atmos Ocean 33:407–446

    Article  Google Scholar 

  • Ziemke JR, Chandra S, Schoeberl MR, Froidevaux L, Read WG, Levelt PF, Bhartia PK (2007) Intra-seasonal variability in tropospheric ozone and water vapor in the tropics. Geophys Res Lett 34:L17804. doi:10.1029/2007GL030965

    Article  Google Scholar 

  • Ziemke JR, Chandra S, Duncan BN, Schoeberl MR, Damon MR, Torres O, Bhartia PK (2009) Recent biomass burning events in the tropics and elevated concentrations of tropospheric ozone. Geophys Res Lett 36:L15819. doi:10.1029/2009GL039303

    Article  Google Scholar 

  • Ziemke JR, Chandra S, Oman LD, Bhartia PK (2010) A new ENSO index derived from satellite measurements of column ozone. Atmos Chem Phys 10:3711–3721. doi:10.5194/acp-10-3711-2010

    Article  Google Scholar 

  • Zuidema P (2003) Convective clouds over the Bay of Bengal. Mon Weather Rev 131:780–798

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to the European Commission, Airbus, CNRS-France, FZJ-Germany and the airlines (Lufthansa, Air France, Austrian and former Sabena who carry free of charge the MOZAIC instrumentation since 1994). We are also thankful to the University of Wyoming for providing the vertical profiles of met data over Hyderabad. The data used in the present study is available with Dr. Lokesh Kumar Sahu (Email: lokesh@prl.res.in).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. K. Sahu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, L.K., Sheel, V., Kajino, M. et al. Impact of tropical convection and ENSO variability in vertical distributions of CO and O3 over an urban site of India. Clim Dyn 49, 449–469 (2017). https://doi.org/10.1007/s00382-016-3353-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3353-7

Keywords

Navigation