Skip to main content

Advertisement

Log in

Sources of errors in the simulation of south Asian summer monsoon in the CMIP5 GCMs

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Accurate simulation of the South Asian summer monsoon (SAM) is still an unresolved challenge. There has not been a benchmark effort to decipher the origin of undesired yet virtually invariable unsuccessfulness of general circulation models (GCMs) over this region. This study analyzes a large ensemble of CMIP5 GCMs to show that most of the simulation errors in the precipitation distribution and their driving mechanisms are systematic and of similar nature across the GCMs, with biases in meridional differential heating playing a critical role in determining the timing of monsoon onset over land, the magnitude of seasonal precipitation distribution and the trajectories of monsoon depressions. Errors in the pre-monsoon heat low over the lower latitudes and atmospheric latent heating over the slopes of Himalayas and Karakoram Range induce significant errors in the atmospheric circulations and meridional differential heating. Lack of timely precipitation further exacerbates such errors by limiting local moisture recycling and latent heating aloft from convection. Most of the summer monsoon errors and their sources are reproducible in the land–atmosphere configuration of a GCM when it is configured at horizontal grid spacing comparable to the CMIP5 GCMs. While an increase in resolution overcomes many modeling challenges, coarse resolution is not necessarily the primary driver in the exhibition of errors over South Asia. These results highlight the importance of previously less well known pre-monsoon mechanisms that critically influence the strength of SAM in the GCMs and highlight the importance of land–atmosphere interactions in the development and maintenance of SAM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Ashfaq M, Shi Y, Tung WW, Trapp RJ, Gao XJ, Pal JS, Diffenbaugh NS (2009) Suppression of south Asian summer monsoon precipitation in the 21st century. Geophys Res Lett. doi:10.1029/2008gl036500

    Google Scholar 

  • Ashfaq M, Skinner CB, Diffenbaugh NS (2011) Influence of SST biases on future climate change projections. Clim Dyn 36(7–8):1303–1319. doi:10.1007/s00382-010-0875-2

    Article  Google Scholar 

  • Bamzai AS, Shukla J (1999) Relation between Eurasian snow cover, snow depth, and the Indian summer monsoon: an observational study. J Clim 12(10):3117–3132

    Article  Google Scholar 

  • Bollasina M, Ming Y (2013) The role of land-surface processes in modulating the Indian monsoon annual cycle. Clim Dyn 41(9–10):2497–2509. doi:10.1007/s00382-012-1634-3

    Article  Google Scholar 

  • Boos WR, Hurley JV (2013) Thermodynamic bias in the multimodel mean boreal summer monsoon. J Clim 26(7):2279–2287. doi:10.1175/Jcli-D-12-00493.1

    Article  Google Scholar 

  • Bronkhorst VB (2012) Disaster risk management in South Asia: regional overview. Rep. 76302, World Bank, Washington DC

  • Chen H, Schneider EK (2014) Comparison of the SST forced responses between coupled and uncoupled climate simulations. J Clim 27:740–756

    Article  Google Scholar 

  • Chen H, Schneider EK, Kirtman BP, Colfescu I (2013) Evaluation of weather noise and its role in climate model simulations. J Clim 26:3766–3784

    Article  Google Scholar 

  • Cherchi A, Annamalai H, Masina S, Navarra A (2014) South Asian summer monsoon and the eastern mediterranean climate: the monsoon, äìdesert mechanism in CMIP5 Simulations. J Clim 27(18):6877–6903. doi:10.1175/jcli-d-13-00530.1

    Article  Google Scholar 

  • Cohen NY, Boos WR (2014) Has the number of Indian summer monsoon depressions decreased over the last 30 years? Geophys Res Lett 41(22):7846–7853. doi:10.1002/2014GL061895

    Article  Google Scholar 

  • Cohen J, Rind D (1991) The effect of snow cover on the climate. J Clim 4(7):689–706. doi:10.1175/1520-0442(1991)004<0689:TEOSCO>2.0.CO;2

    Article  Google Scholar 

  • Colfescu I, Schneider EK, Chen H (2013) Consistency of 20th century sea level pressure trends as simulated by a coupled and uncoupled GCM. Geophys Res Lett 40:3276–3280. doi:10.1002/grl.50545

    Article  Google Scholar 

  • De S, Hazra A, Chaudhari HS (2016) Does the modification in “critical relative humidity” of NCEP CFSv2 dictate Indian mean summer monsoon forecast? Evaluation through thermodynamical and dynamical aspects. Clim Dyn 46(3–4):1197–1222. doi:10.1007/s00382-015-2640-z

    Article  Google Scholar 

  • Dey B, Kumar OSRUB (1983) Himalayan winter snow cover area and summer monsoon rainfall over India. J Geophys Res Oceans 88(Nc9):5471–5474

    Article  Google Scholar 

  • Dirmeyer PA (2011) The terrestrial segment of soil moisture-climate coupling. Geophys Res Lett. doi:10.1029/2011gl048268

    Google Scholar 

  • Dominguez F, Kumar P, Liang XZ, Ting MF (2006) Impact of atmospheric moisture storage on precipitation recycling. J Clim 19(8):1513–1530. doi:10.1175/Jcli3691.1

    Article  Google Scholar 

  • Gent PR et al (2011) The community climate system model version 4. J Clim 24(19):4973–4991. doi:10.1175/2011jcli4083.1

    Article  Google Scholar 

  • Goswami BN, Xavier PK (2005) Dynamics of “internal” interannual variability of the Indian summer monsoon in a GCM. J Geophys Res Atmos. doi:10.1029/2005jd006042

    Google Scholar 

  • Halder S, Dirmeyer PA, Saha SK (2015) Sensitivity of the mean and variability of Indian summer monsoon to land surface schemes in RegCM4: understanding coupled land–atmosphere feedbacks. J Geophys Res Atmos 120(18):9437–9458. doi:10.1002/2015jd023101

    Article  Google Scholar 

  • Hodges KI (1995) Feature tracking on the unit-sphere. Mon Weather Rev 123(12):3458–3465. doi:10.1175/1520-0493(1995)123<3458:Ftotus>2.0.Co;2

    Article  Google Scholar 

  • Hodges KI (1996) Spherical nonparametric estimators applied to the UGAMP model integration for AMIP. Mon Weather Rev 124(12):2914–2932. doi:10.1175/1520-0493(1996)124<2914:Sneatt>2.0.Co;2

    Article  Google Scholar 

  • Immerzeel WW, Bierkens MFP (2010) Seasonal prediction of monsoon rainfall in three Asian river basins: the importance of snow cover on the Tibetan Plateau. Int J Climatol 30(12):1835–1842

    Google Scholar 

  • Kapnick SB, Delworth TL, Ashfaq M, Malyshev S, Milly PCD (2014) Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nat Geosci 7(11):834–840. doi:10.1038/ngeo2269

    Article  Google Scholar 

  • Kistler R et al (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82(2):247–267. doi:10.1175/1520-0477(2001)082<0247:Tnnyrm>2.3.Co;2

    Article  Google Scholar 

  • Koster RD et al (2004) Regions of strong coupling between soil moisture and precipitation. Science 305(5687):1138–1140. doi:10.1126/science.1100217

    Article  Google Scholar 

  • Kripalani RH, Kulkarni A, Sabade SS (2003) Western Himalayan snow cover and Indian monsoon rainfall: a re-examination with INSAT and NCEP/NCAR data. Theor Appl Climatol 74(1–2):1–18

    Article  Google Scholar 

  • Li CY, Pan J (2006) Atmospheric circulation characteristics associated with the onset of Asian summer monsoon. Adv Atmos Sci 23(6):925–939. doi:10.1007/S00376-006-0925-1

    Article  Google Scholar 

  • Li CF, Yanai M (1996) The onset and interannual variability of the Asian summer monsoon in relation to land sea thermal contrast. J Clim 9(2):358–375. doi:10.1175/1520-0442(1996)009<0358:Toaivo>2.0.Co;2

    Article  Google Scholar 

  • Liu Z, Ostrenga D, Teng W, Kempler S (2012) Tropical rainfall measuring mission (TRMM) precipitation data and services for research and applications. Bull Am Meteorol Soc 93(9):1317–1325. doi:10.1175/bams-d-11-00152.1

    Article  Google Scholar 

  • Mei R, Ashfaq M, Rastogi D, Leung LR, Dominguez F (2015) Dominating controls for wetter south Asian summer monsoon in the twenty-first century. J Clim 28(8):3400–3419. doi:10.1175/JCLI-D-14-00355.1

    Article  Google Scholar 

  • Mitchell TD, Hulme M, New M (2002) Climate data for political areas. Area 34(1):103–112. doi:10.1111/1475-4762.00062

    Article  Google Scholar 

  • Mooley DA, Shukla J (1987) Variability and forecasting of the summer monsoon rainfall over India, In: Krishnamurti CPCATN (ed) Monsoon meteorology, Oxford University Press, pp. 26–59

  • Ramesh KV, Goswami P (2014) Assessing reliability of regional climate projections: the case of Indian monsoon. Sci Rep. doi:10.1038/srep04071

    Google Scholar 

  • Sabeerali CT, Rao S, Dhakate AR, Salunke K, Goswami BN (2014) Why ensemble mean projection of south Asian monsoon rainfall by CMIP5 models is not reliable? Clim Dyn. doi:10.1007/s00382-014-2269-3

    Google Scholar 

  • Sabin TP, Krishnan R, Ghattas J, Denvil S, Dufresne JL, Hourdin F, Pascal T (2013) High resolution simulation of the South Asian monsoon using a variable resolution global climate model. Clim Dyn 41(1):173–194. doi:10.1007/S00382-012-1658-8

    Article  Google Scholar 

  • Sandeep S, Ajayamohan RS (2014) Origin of cold bias over the Arabian Sea in climate models. Sci Rep. doi:10.1038/srep06403

    Google Scholar 

  • Sikka DR (1977) Some aspects of life-history, structure and movement of monsoon depressions. Pure Appl Geophys 115(5–6):1501–1529. doi:10.1007/Bf00874421

    Article  Google Scholar 

  • Sikka DR, Gadgil S (1980) On the maximum cloud zone and the Itcz over Indian longitudes during the southwest monsoon. Mon Weather Rev 108(11):1840–1853. doi:10.1175/1520-0493(1980)108<1840:Otmcza>2.0.Co;2

    Article  Google Scholar 

  • Singh D et al (2014) Severe precipitation in Northern India in June 2013: causes, historical context, and changes in probability. Bull Am Meteorol Soc 95(9):S58–S61

    Google Scholar 

  • Sperber KR, Annamalai H, Kang IS, Kitoh A, Moise A, Turner A, Wang B, Zhou T (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41(9–10):2711–2744. doi:10.1007/s00382-012-1607-6

    Article  Google Scholar 

  • Tamura T, Taniguchi K, Koike T (2010) Mechanism of upper tropospheric warming around the Tibetan Plateau at the onset phase of the Asian summer monsoon (vol 115, D02106, 2010). J Geophys Res Atmos. doi:10.1029/2010jd014090

    Google Scholar 

  • Wang B, LinHo (2002) Rainy season of the Asian-Pacific summer monsoon. J Clim 15:386–398. doi:10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2

    Article  Google Scholar 

  • Webster PJ, Magana VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res Oceans 103(C7):14451–14510. doi:10.1029/97jc02719

    Article  Google Scholar 

  • Willmott CJ, Matsuura K (2001) Terrestrial air temperature and precipitation: monthly and annual time series (1950–1999), edited

  • Xavier PK, Marzin C, Goswami BN (2007) An objective definition of the Indian summer monsoon season and a new perspective on the ENSO-monsoon relationship. Q J R Meteorol Soc 133(624):749–764. doi:10.1002/qj.45

    Article  Google Scholar 

  • Xie P, Janowiak JE, Arkin PA, Adler R, Gruber A, Ferraro R, Huffman GJ, Curtis S (2003) GPCP pentad precipitation Analyses: an experimental dataset based on gauge observations and satellite estimates. J Clim 16(13):2197–2214. doi:10.1175/2769.1

    Article  Google Scholar 

  • Yanai M, Esbensen S, Chu JH (1973) Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J Atmos Sci 30(4):611–627. doi:10.1175/1520-0469(1973)030<0611:Dobpot>2.0.Co;2

    Article  Google Scholar 

  • Yatagai A, Kamiguchi K, Arakawa O, Hamada A, Yasutomi N, Kitoh A (2012) APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull Am Meteorol Soc 93(9):1401–1415. doi:10.1175/bams-d-11-00122.1

    Article  Google Scholar 

  • Yoon JH, Chen TC (2005) Water vapor budget of the Indian monsoon depression. Tellus A 57(5):770–782. doi:10.1111/J.1600-0870.2005.00145.X

    Article  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for helpful and insightful comments. Support for model simulations, data storage and analysis is provided by the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory (ORNL), which is supported by the Office of Science of the U.S. Department of Energy (DOE) under Contract No. DE-AC05-00OR22725. We thank U.S. DOE’s Program for Climate Model Diagnosis and Intercomparison for providing coordinating support and leading development of software infrastructure in partnership with the Global Organization for Earth System Science Portals for CMIP. This work is supported by Regional and Global Climate Modeling program of DOE Office of Science and ORNL LDRD Project 32112413. Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moetasim Ashfaq.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 465 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashfaq, M., Rastogi, D., Mei, R. et al. Sources of errors in the simulation of south Asian summer monsoon in the CMIP5 GCMs. Clim Dyn 49, 193–223 (2017). https://doi.org/10.1007/s00382-016-3337-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3337-7

Keywords

Navigation