Skip to main content

Advertisement

Log in

Correcting North Atlantic sea surface salinity biases in the Kiel Climate Model: influences on ocean circulation and Atlantic Multidecadal Variability

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A long-standing problem in climate models is the large sea surface salinity (SSS) biases in the North Atlantic. In this study, we describe the influences of correcting these SSS biases on the circulation of the North Atlantic as well as on North Atlantic sector mean climate and decadal to multidecadal variability. We performed integrations of the Kiel Climate Model (KCM) with and without applying a freshwater flux correction over the North Atlantic. The quality of simulating the mean circulation of the North Atlantic Ocean, North Atlantic sector mean climate and decadal variability is greatly enhanced in the freshwater flux-corrected integration which, by definition, depicts relatively small North Atlantic SSS biases. In particular, a large reduction in the North Atlantic cold sea surface temperature bias is observed and a more realistic Atlantic Multidecadal Variability simulated. Improvements relative to the non-flux corrected integration also comprise a more realistic representation of deep convection sites, sea ice, gyre circulation and Atlantic Meridional Overturning Circulation. The results suggest that simulations of North Atlantic sector mean climate and decadal variability could strongly benefit from alleviating sea surface salinity biases in the North Atlantic, which may enhance the skill of decadal predictions in that region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Ba J et al (2013) A mechanism for Atlantic multidecadal variability in the Kiel Climate Model. Clim Dyn 41:2133–2144. doi:10.1007/s00382-012-1633-4

    Article  Google Scholar 

  • Ba J et al (2014) A multi-model comparison for Atlantic multidecadal variability. Clim Dyn 43:2333–2348. doi:10.1007/s00382-014-2056-1

    Article  Google Scholar 

  • Carton JA, Grodsky SA, Liu Hailong (2008) Variability of the oceanic mixed layer, 1960–2004. J Climate 21:1029–1047. doi:10.1175/2007JCLI1798.1

    Article  Google Scholar 

  • de Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:C12003. doi:10.1029/2004JC002378

    Article  Google Scholar 

  • Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the northern hemisphere. Clim Dyn 16:661–676

    Article  Google Scholar 

  • Delworth TL, Rosati A, Anderson W et al (2012) Simulated climate and climate change in the GFDL CM2. 5 high-resolution coupled climate model. J Climate 25:2755–2781. doi:10.1175/jcli-d-11-00316.1

    Article  Google Scholar 

  • Drews A, Greatbatch RJ, Ding H et al (2015) The use of a flow field correction technique for alleviating the North Atlantic cold bias with application to the Kiel Climate Model. Ocean Dyn 65:1079–1093. doi:10.1007/s10236-015-0853-7

    Article  Google Scholar 

  • Drijfhout S (2015) Competition between global warming and an abrupt collapse of the AMOC in Earth’s energy imbalance. Sci Rep 5:14877. doi:10.1038/srep14877

    Article  Google Scholar 

  • Flato G et al (2013) Evaluation of climate models. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Gulev SK, Latif M, Keenlyside NS, Koltermann KP (2013) North Atlantic Ocean control on surface heat flux at multidecadal timescales. Nature 499. doi:10.1038/nature12268

  • Hofmann M, Rahmstorf S (2009) On the stability of the Atlantic meridional overturning circulation. PNAS 49. doi:10.1073/pnas.0909146106

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation regional temperatures and precipitation. Science 269:676–679

    Article  Google Scholar 

  • Keeley SPE, Sutton RT, Shaffrey LC (2012) The impact of North Atlantic sea surface temperature errors on the simulation of North Atlantic European region climate. Q J R Meteorol Soc 138:1774–1783. doi:10.1002/qj.1912

    Article  Google Scholar 

  • Knight JR et al (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi:10.1029/2005GL024233

    Article  Google Scholar 

  • Latif M (2013) The oceans’ role in modeling and predicting decadal climate variations. In: Siedler G, Griffies S, Gould J, Church J (eds) Ocean circulation and climate, 2nd edn. A 21st century perspective. International Geophysics Series, Volume 103, ISBN: 9780123918512. Academic Press, New York

  • Latif M et al (2004) Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J Climate 17:1605–1614

    Article  Google Scholar 

  • Latif M et al (2006) Is the thermohaline circulation changing? J Climate 19:4631–4637

    Article  Google Scholar 

  • Manabe S, Stouffer RJ (1988) Two stable equilibria of a coupled ocean–atmosphere model. J. Climate 1:841–866

    Article  Google Scholar 

  • Marshall J, Schott F (1999) Open-ocean convection: observations, theory, and models. Rev Geophys 37(1):1–64. doi:10.1029/98RG02739

    Article  Google Scholar 

  • Marshall J, Johnson H, Goodman J (2001) A study of the interaction of the North Atlantic oscillation with ocean circulation. J Climate 14:1399–1421

    Article  Google Scholar 

  • Park W et al (2009) Tropical Pacific Climate and its response to global warming in the Kiel Climate Model. J Climate 22:71–92

    Article  Google Scholar 

  • Rayner NA et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Sausen R, Barthel K, Hasselmann K (1988) Coupled ocean–atmosphere models with flux correction. Clim Dyn 2:145–163

    Article  Google Scholar 

  • Scaife AA, Copsey D, Gordon C, Harris C, Hinton T, Keeley S, O’Neill A, Roberts M, Williams K (2011) Improved Atlantic winter blocking in a climate model. Geophys Res Lett 38:L23703. doi:10.1029/2011GL049573

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (1998) The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25(9):1297–1300

    Article  Google Scholar 

  • Tonboe R, Eastwood S, Lavergne T, Pedersen LT (2011) EUMETSAT OSI SAF global sea ice concentration reprocessing data. Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data. National Snow and Ice Data Center, Boulder

  • Wang C, Zhang L (2013) Multidecadal ocean temperature and salinity variability in the Tropical North Atlantic: linking with the AMO, AMOC, and subtropical cell. J Climate 26:6137–6162

    Article  Google Scholar 

  • Wang C et al (2014) A global perspective on CMIP5 climate model biases. Nature Climate Change 4:201–205. doi:10.1038/nclimate2118

    Article  Google Scholar 

  • Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712. doi:10.1029/2006GL026267

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Excellence Cluster “Future Ocean” of DFG, BMBF-funded project RACE (No. 03F0651B) and the EU-funded project NACLIM (grant agreement No. 308299). The climate model integrations were performed at the Computing Center of Kiel University and at DKRZ Hamburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Latif.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2.15 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, T., Park, W. & Latif, M. Correcting North Atlantic sea surface salinity biases in the Kiel Climate Model: influences on ocean circulation and Atlantic Multidecadal Variability. Clim Dyn 47, 2543–2560 (2016). https://doi.org/10.1007/s00382-016-2982-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-2982-1

Keywords

Navigation