Skip to main content

Advertisement

Log in

Quantifying some of the impacts of dust and other aerosol on the Caspian Sea region using a regional climate model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Central Asian deserts are a major dust source region that can potentially have a substantial impact on the Caspian Sea. Despite major advances in the modeling and prediction of the Caspian Sea Level (CSL) during recent years, no study to date has investigated the climatic effects of dust on the hydrological budget of the Sea. In this study, we utilize a regional climate model coupled to an interactive emission and transport scheme to simulate the effects of dust and other aerosol in the Caspian region. First, we present a validation of the model using a variety of AOD satellite observations as well as a climatology of dust storms. Compared to the range of satellite estimates, the model’s AOD climatology is closer to the lower end of the observations, and exhibit a significant underestimation over the clay deserts found on the Ustyurt plateau and north of the Aral Sea. Nevertheless, we find encouraging results in that the model is able to reproduce the gradient of increasing AOD intensity from the middle to the southern part of the Sea. Spatially, the model reproduces reasonably well the observed climatological dust storm frequency maps which show that the most intense dust source regions to be found in the Karakum desert in Turkmenistan and Kyzylkum desert in Uzbekistan east of the Aral Sea. In the second part of this study we explore some impacts of dust and other aerosol on the climatology of the region and on the energy budget of the Sea. We find that the overall direct radiative effects of dust and other aerosol reduce the amount of shortwave radiation reaching the surface, dampen boundary layer turbulence and inhibit convection over the region. We also show that by including dust and aerosol in our simulation, we are able to reduce the positive biases in sea surface temperatures by 1–2 °C. Evaporation is also considerably reduced, resulting in an average difference of approximately \(10~\hbox {mm}~\hbox {year}^{-1}\) in the Sea’s hydrological budget which is substantial. These findings prove that an accurate projection of climate-induced changes to the CSL must include the effects of dust and other aerosol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbasova T (2010) Detection and analysis of changes in desertification in the Caspian Sea region, Master’s thesis, Stockholm University

  • Acker JG, Leptoukh G (2007) Online analysis enhances use of NASA earth science data. Eos Trans Am Geophys Union 88(2):14–17

    Article  Google Scholar 

  • Argaman E, Singer A, Tsoar H (2006) Erodibility of some crust forming soils/sediments from the Southern Aral Sea Basin as determined in a wind tunnel. Earth Surf Process Landf 31(1):47–63

    Article  Google Scholar 

  • Arpe K, Leroy SA (2007) The Caspian Sea Level forced by the atmospheric circulation, as observed and modelled. Quat Int 173–174:144–152

    Article  Google Scholar 

  • CACLIM (2010) Central Asia atlas of natural resources, asian development bank, 6 ADB avenue, Mandaluyong City 1550 Metro Manila, Philippines

  • Cavazos C, Todd MC, Schepanski K (2009) Numerical model simulation of the Saharan dust event of 6–11 March 2006 using the Regional Climate Model version 3 (RegCM3). J Geophys Res 114:D12109. doi:10.1029/2008JD011078

    Article  Google Scholar 

  • Christopher SA, Jones TA (2010) Satellite and surface-based remote sensing of Saharan dust aerosols. Remote Sens Environ 114(5):1002–1007

    Article  Google Scholar 

  • Christopher SA, Gupta P, Haywood J, Greed G (2008) Aerosol optical thicknesses over North Africa: 1. Development of a product for model validation using Ozone Monitoring Instrument, Multiangle Imaging Spectroradiometer, and Aerosol Robotic Network. J Geophys Res 113:D00C04. doi:10.1029/2007JD009446

    Google Scholar 

  • Darmenova K, Sokolik I (2007) Assessing uncertainies in dust emission in the Aral Sea region caused by meteorological fields predicted with a mesoscale model. Glob Planet Change 56. doi:10.1016/j.gloplacha.2006.07.024

  • Diner DJ, Beckert JC, Bothwell GW, Rodriguez JI (2002) Performance of the MISR instrument during its first 20 months in Earth orbit. Geosci Remote Sens IEEE Trans 40(7):1449–1466

    Article  Google Scholar 

  • Elguindi N, Giorgi F (2006a) Projected changes in the Caspian Sea level for the 21st century based on the latest AOGCM simulations. Geophys Res Lett 33(L08706). doi:10.1029/2006GL025943

  • Elguindi N, Giorgi F (2006b) Simulating multi-decadal variability of Caspian Sea level changes using regional climate model outputs. Clim Dyn 26. doi:10.1007/s00382-005-0077-5

  • Elguindi N, Giorgi F (2007) Simulating future Caspian sea level changes using regional climate model outputs. Clim Dyn 28:365–379. doi:10.1007/s00382-006-0185-x

    Article  Google Scholar 

  • Gettelman A, Liu X, Barahona D, Lohmann U, Chen C (2012) Climate impacts of ice nucleation. J Geophys Res 117:D20201. doi:10.1029/2012JD017950

    Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla M, Bi X, Elguindi N, Diro G, Nair V, Giuliani G, Turuncoglu U, Cozzini S, Guttler I, O’Brien T, Tawfik A, Shalaby A, Zakey A, Steiner A, Stordal F, Sloan L, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52. doi:10.3354/cr01018

  • Golitsyn G, Meleshko V, Mesherskaia A, Mokhov I, Pavlova T, Galin V, Senatorsky A (1995) GCM simulation of water and heat balance over the Caspian Sea and the adjacent watershed (Diagnostic Subproject 24). In First International AMIP Scientific Conference

  • Holben B, Eck T, Slutsker I, Tanre D, Buis J, Setzer A, Vermote E, Reagan J, Kaufman Y, Nakajima T et al (1998) AERONET? federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66(1):1–16

    Article  Google Scholar 

  • Hostetler S, Bates G, Giorgi F (1993) Interactive coupling of a lake thermal model with a regional climate model. J Geophys Res 98. doi:10.1029/92JD02843

  • Hsu NC, Tsay SC, King MD, Herman JR (2006) Deep blue retrievals of Asian aerosol properties during ACE-Asia. Geosci Remote Sens IEEE Trans 44(11):3180–3195

    Article  Google Scholar 

  • Ibrayev R, Ozsoy E, Schrum C, Sur H (2010) Seasonal variability of the Caspian Sea three-dimensional circulation, sea level and air-sea interaction. Ocean Sci 6:311–329

    Article  Google Scholar 

  • Indoitu R, Orlovsky L, Orlovsky N (2012) Dust storms in Central Asia: spatial and temporal variations. J Arid Environ 85. doi:10:1016/j.jaridenv.2012.03.018

  • Kahn RA, Gaitley BJ, Martonchik JV, Diner DJ, Crean KA, Holben B (2005) Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations. J Geophys Res 110:D10S04. doi:10.1029/2004JD004706

    Google Scholar 

  • Kahn RA, Gaitley BJ, Garay MJ, Diner DJ, Eck TF, Smirnov A, Holben BN (2010) Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network. J Geophys Res 115:D23209. doi:10.1029/2010JD014601

    Article  Google Scholar 

  • Karydis VA, Kumar P, Barahona D, Sokolik IN, Nenes A (2011) On the effect of dust particles on global cloud condensation nuclei and cloud droplet number. J Geophys Res 116:D23204. doi:10.1029/2011JD016283

    Google Scholar 

  • Kiehl JT, Hack JJ, Bonan GB, Boville BA, Briegleb BP, Williamson DL, Rasch PJ (1996) Description of the NCAR Community Climate Model (CCM3). NCAR Technical Note NCAR/TN-420+STR. doi:10.5065/D6FF3Q99

  • Konare A, Zakey AS, Solmon F, Giorgi F, Rauscher S, Ibrah S, Bi X (2008) A regional climate modeling study of the effect of desert dust on the West African monsoon. J Geophys Res 113:D12206. doi:10.1029/2007JD009322

    Article  Google Scholar 

  • Koven CD, Fung I (2008) Identifying global dust source areas using high-resolution land surface form. J Geophys Res 113:D22204. doi:10.1029/2008JD010195

    Article  Google Scholar 

  • Lamarque JF, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B et al (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10(15):7017–7039

    Article  Google Scholar 

  • Legates D, Willmott C (1990) Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int J Climatol 10:111–127

    Article  Google Scholar 

  • MacCallum S, Merchant C (2011) ARC-lake validation report, Tech. Rep. v1.0. School of GeoSciences, The University of Edinburgh

  • Mahowald N, Ballantine J, Feddema J, Ramankutty N (2007) Global trends in visibility: implications for dust sources. Atmos Chem Phys 7(12):3309–3339

    Article  Google Scholar 

  • Malavelle F, Mallet M, Pont V, Liousse C, Solmon F (2011) Long-term simulations (2001–2006) of biomass burning and mineral dust optical properties over West Africa: comparisons with new satellite retrievals. Atmos Chem Phys Discuss 11(10):28587–28626

    Article  Google Scholar 

  • Martonchik JV, Diner DJ, Kahn R, Gaitley B, Holben BN (2004) Comparison of MISR and AERONET aerosol optical depths over desert sites. Geophys Res Lett 31. doi:10.1029/2004GL019807

  • Menut L, Perez Garcia-Pando C, Haustein K, Bessagnet B, Prigent C, Alfaro S (2013) Relative impact of roughness and soil texture on mineral dust emission fluxes modeling. J Geophys Res Atmos 118:6505–6520. doi:10.1002/jgrd.50313

    Article  Google Scholar 

  • Micklin P (2006) The Aral Sea disaster. Annu Rev Earth Planet Sci 35. doi:10.1146/annurev.earth.35.031306.140120

  • New M, Hulme M, Jones P (2000) Representing twentieth-century spacetime climate variability. Part II: development of 1901–96 monthly grids of terrestrial surface climate. J Clim 13:2217–2238

    Article  Google Scholar 

  • Orlovsky L, Kaplan S, Orlovsky N, Blumberg D, Mamedov E (2006) Monitoring land use and land cover changes in Turkmenistan using remote sensing. Manag Nat Resour Sustain Dev Ecol Hazards 99. doi:10.2495/RAV060461

  • Rodionov S (1994) Global and regional climate interaction: the Caspian Sea experience. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  • Sayer AM, Hsu NC, Bettenhausen C, Ahmad Z, Holben BN, Smirnov A, Thomas GE, Zhang J (2012a) SeaWiFS Ocean Aerosol Retrieval (SOAR): algorithm, validation, and comparison with other data sets. J Geophys Res 117:D03206. doi:10.1029/2011JD016599

    Google Scholar 

  • Sayer A, Hsu N, Bettenhausen C, Jeong MJ, Holben B, Zhang J (2012b) Global and regional evaluation of over-land spectral aerosol optical depth retrievals from SeaWiFS. Atmos Meas Tech 5(7):1761–1778

    Article  Google Scholar 

  • Seigel R, van den Heever S, Saleeby S (2013) Mineral dust indirect effects and cloud radiative feedbacks of a simulated idealized nocturnal squall line. Atmos Chem Phys 13(8):4467–4485

    Article  Google Scholar 

  • Shi Y, Zhang J, Reid J, Hyer E, Eck T, Holben B, Kahn R (2011) A critical examination of spatial biases between MODIS and MISR aerosol products-application for potential AERONET deployment. Atmos Meas Tech 4(12):2823–2836

    Article  Google Scholar 

  • Singer A, Zobeck T, Poberezsky L, Argaman E (2003) The \(\text{ PM }_{10}\) and \(\text{ PM }_{2.5}\) dust generation potential of soils/sediments in the Southern Aral Sea Basin, Uzbekistan. J Arid Environ 54(4):705–728

    Article  Google Scholar 

  • Small E, Giorgi F, Sloan L, Hostetler S (2001) The effects of desiccation and climatic change on the hydrology of the Aral Sea. J Clim 14:300–322

    Article  Google Scholar 

  • Small E, Sloan L, Hosteller S, Giorgi F (1999) Simulating the water balance of the Aral Sea with a coupled regional climate-lake model. J Geophys Res 104. doi:10.1029/98JD02348

  • Solmon F, Giorgi F, Liousse C (2006) Aerosol modelling for regional climate studies: application to anthropogenic particles and evaluation over a European/African domain. Tellus B 58(1):51–72

    Article  Google Scholar 

  • Solmon F, Mallet M, Elguindi N, Giorgi F, Zakey A, Konaré A (2008) Dust aerosol impact on regional precipitation over western Africa, mechanisms and sensitivity to absorption properties. Geophys Res Lett 35:L24705. doi:10.1029/2008GL035900

    Article  Google Scholar 

  • Solmon F, Elguindi N, Mallet M (2012) Radiative and climatic effects of dust over West Africa, as simulated by a regional climate model. Clim Res 52:97–113

    Article  Google Scholar 

  • Turuncoglu U, Elguindi N, Giorgi F, Fournier N, Giuliani G (2013) Development and validation of a regional coupled atmosphere lake model for the Caspian Sea. Clim Dyn 41. doi:10.1007/s00382-012-1623-6

  • Uppala S, Dee D, Kobayashi S, Berrisford P, Simmons A (2008) Towards a climate adapt assimilation system: status update of ERA-Interim. ECMWF Newsletter pp. 12–18

  • WIllmott C, Matsuura K (1995) Smart interpolation of annually averaged air temperature in the United States. J Appl Meteorol 34:2577–2586

    Article  Google Scholar 

  • Xia X, Zong X (2009) Shortwave versus longwave direct radiative forcing by Taklimakan dust aerosols. Geophys Res Lett 36:L07803. doi:10.1029/2009GL037237

    Article  Google Scholar 

  • Zakey A, Solmon F, Giorgi F et al (2006) Implementation and testing of a desert dust module in a regional climate model. Atmos Chem Phys 6(12):4687–4704

    Article  Google Scholar 

  • Zakey AS, Giorgi F, Bi X (2008) Modeling of sea salt in a regional climate model: fluxes and radiative forcing. J Geophys Res 113:D14221. doi:10.1029/2007JD009209

    Article  Google Scholar 

Download references

Acknowledgments

We wish to express our gratitude to the anonymous reviewers whose insightful comments helped to improve the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Elguindi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elguindi, N., Solmon, F. & Turuncoglu, U. Quantifying some of the impacts of dust and other aerosol on the Caspian Sea region using a regional climate model. Clim Dyn 46, 41–55 (2016). https://doi.org/10.1007/s00382-015-2566-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2566-5

Keywords

Navigation