Skip to main content

Advertisement

Log in

A mechanism for the multidecadal modulation of ENSO teleconnection with Europe

Climate Dynamics Aims and scope Submit manuscript

Abstract

El Niño phenomenon is the main oceanic driver of the interannual atmospheric variability and a determinant source of predictability in the tropics and extratropics. Several studies have found a consistent and statistically significant impact of El Niño over the North Atlantic European Sector, which could lead to an improvement of the skill of current seasonal forecast systems over Europe. Nevertheless, this signal seems to be non-stationary in time and it could be modulated by the ocean at very low frequencies. Hence, the seasonal climate predictability based on El Niño could be variable and only effective for specific time periods. This study considers the multidecadal changes in the ocean mean state as a possible modulator of ENSO-European rainfall teleconnection at interannual timescales. A long control simulation of the CNRM-CM5 model is used to substantiate this hypothesis and to assess if it can be relevant to explain the non-stationary behavior seen in the twentieth century. The model reproduces the leading rainfall mode over the Euro-Mediterranean region, and its non stationary link with El Niño. This teleconnection has been identified in coincidence with changes of the zonal mean flow at upper levels, which influence the propagation of the waves from the tropics to extratropics through the atmosphere and, hence, to explain the changing impact over Europe. However, the non-stationary impact observed along the twentieth century could also be related to the observed changes in the interannual oceanic forcing signal itself. The results obtained suggest, for both hypotheses, an important role of the natural internal variability of the ocean at multidecadal timescales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ambrizzi T, Hoskins BJ, Hsu HH (1995) Rossby wave propagation and teleconnection patterns in the austral winter. J Atmos Sci 52:3661–3672

    Article  Google Scholar 

  • An SI (2009) A review of interdecadal changes in the nonlinearity of the El Niño-Southern Oscillation. Theoret Appl Climatol 97(1–2):29–40. doi:10.1007/s00704-008-0071-z

    Article  Google Scholar 

  • An SI, Wang B (1999) Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J Clim 13:2044–2056

    Article  Google Scholar 

  • Barnston AG, Livezey RE (1987) Classification, seasonality, and persistence of low-frequency atmospheric circulation patterns. Monsoon Weather Rev 115:1083–1126

    Article  Google Scholar 

  • Bladé I, Newman M, Alexander M, Scott J (2008) The late fall extratropical response to ENSO: sensitivity to coupling and convection in the tropical west Pacific. J Clim 21:6101–6118

    Article  Google Scholar 

  • Branstator G (1992) The maintenance of low-frequency atmospheric anomalies. J Atmos Sci 49:1924–1946

    Article  Google Scholar 

  • Branstator G (2002) Circumglobal Teleconnections, the Jet Stream Waveguide, and the North Atlantic Oscillation. J Clim 15(14):1893–1910. doi:10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2

    Article  Google Scholar 

  • Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5(6):541–560. doi:10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2

    Article  Google Scholar 

  • Brönnimann, S (2007) Impact of El Niño–Southern Oscillation on European climate. Rev Geophys 45:RG3003, doi:10.1029/2006RG000199

  • Cassou C, Terray L (2001) Oceanic forcing of the winter-time low-frequency atmospheric variability in the North Atlantic European sector: a study with the ARPEGE model. J Clim 14:4266–4291

    Article  Google Scholar 

  • Castanheira JM, Graf HF (2003) North Pacific-North Atlantic relationships under stratospheric control? J Geophys Res 108(D1):4036. doi:10.1029/2002JD002754

    Article  Google Scholar 

  • Choi J, Kug SAJ, Nin E (2011) The role of mean state on changes in El Nino’s flavor. 1205–1215. doi:10.1007/s00382-010-0912-1

  • Czaja A, Frankignoul C (1999) Influence of the North Atlantic SST on the atmospheric circulation. Geophys Res Lett 26(19):2969–2972. doi:10.1029/1999GL900613

    Article  Google Scholar 

  • Dommenget D, Bayr T, Frauen C (2012) Analysis of the non-linearity in the pattern and time evolution of El Niño southern oscillation. Clim Dyn 40(11–12):2825–2847. doi:10.1007/s00382-012-1475-0

    Google Scholar 

  • Dong B, Sutton RT, Sutton AA (2006) Multidecadal modulation of El Niño-Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys Res Lett 33:L08705. doi:10.1029/2006GL025766

    Google Scholar 

  • Enfield DB, Mestas Nuñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28(10):2077. doi:10.1029/2000GL012745

    Article  Google Scholar 

  • Fedorov AV (2000) Is El Nino changing? Science 288(5473):1997–2002. doi:10.1126/science.288.5473.1997

    Article  Google Scholar 

  • Fraedrich K, Müller K (1992) Climate anomalies in Europe associated with ENSO extremes. Int J Climatol 12:25–31. doi:10.1002/joc.3370120104

    Article  Google Scholar 

  • García-Serrano J, Rodríguez-Fonseca B, Bladé I, Zurita-Gotor P, Cámara A (2010) Rotational atmospheric circulation during North Atlantic-European winter: the influence of ENSO. Clim Dyn 37(9–10):1727–1743. doi:10.1007/s00382-010-0968-y

    Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulations. Q J R Meteorol Soc 106:447–462

    Article  Google Scholar 

  • Gouirand I, Moron V, Zorita E (2007) Teleconnections between ENSO and North Atlantic in an ECHO-G simulation of the 1000–1990 period. Geophys Res Lett 34(6). doi: 10.1029/2006GL028852

  • Greatbatch RJ, Lu J, Peterson KA (2004) Nonstationary impact of ENSO on Euro-Atlantic winter climate. Geophys Res Lett 31:L02208. doi:10.1029/2003GL018542

    Article  Google Scholar 

  • Häkkinen S, Rhines PB, Worthen DL (2001) Atmospheric blocking and Atlantic multidecadal ocean variability. Science 334(6056):655–659. doi:10.1126/science.1205683

    Article  Google Scholar 

  • Hastenrath S (2003) Upper-air circulation of the Southern Oscillation from the NCEP-NCAR reanalysis. Meteorol Atmos Phys 83:51–65

    Article  Google Scholar 

  • Hilmer M, Jung T (2000) Evidence for a recent change in the link between theNorth Atlantic Oscillation and Arctic Sea ice export. Geophys Res Lett 27(7):989–992. doi:10.1029/1999GL010944

    Article  Google Scholar 

  • Honda M, Nakamura H, Ukita J, Kousaka I, Takeuchi K (2001) Interannual seesaw between the Aleutian and Icelandic lows, part I: seasonal dependence and life cycle. J. Climate. 14:1029–1041

    Article  Google Scholar 

  • Hoskins BJ, Ambrizzi T (1993) Rossby wave propagation on a realistic longitudinally varying flow. Atmos. Sci. 50:1661–1671

    Article  Google Scholar 

  • Hoskins BJ, Karoly K (1981) The steady response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196

    Article  Google Scholar 

  • Hsu HH, Lin SH (1992) Global teleconnections in the 250-mb streamfunction field during the northern hemisphere winter. Monsoon Weather Rev 120:1169–1190

    Article  Google Scholar 

  • Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation, in the North Atlantic Oscillation: climatic significance and environmental impact

  • Ineson S, Scaife AA (2008) The role of the stratosphere in the European climate response to El Niño. Nat Geosci 2(1):32–36. doi:10.1038/ngeo381

    Article  Google Scholar 

  • Kao HY, Yu JY (2009) Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J Clim 22(3):615–632. doi:10.1175/2008JCLI2309.1

    Article  Google Scholar 

  • Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32. doi:10.1029/2005GL024233

  • Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22(6):1499–1515. doi:10.1175/2008JCLI2624.1

    Article  Google Scholar 

  • Livezey RE, Mo KC (1987) Tropical-extratropical teleconnections during the Northern Hemisphere winter. Part II: relationships between monthly mean Northern Hemisphere circulation patterns and proxies for tropical convection. Monsoon Weather Rev 115:3115–3132

    Article  Google Scholar 

  • López-Parages J, Rodríguez-Fonseca B (2012) Multidecadal modulation of El Niño influence on the Euro-Mediterranean rainfall. Geophys Res Lett 39(2). doi:10.1029/2011GL050049

  • Losada T, Rodríguez-Fonseca B, Polo I, Janicot S, Gervois S, Chauvin F, Ruti P (2010) Tropical response to the Atlantic Equatorial mode: AGCM multimodel approach. Clim Dyn 5:45–52

    Article  Google Scholar 

  • Losada T, Rodríguez-Fonseca B, Mohino E, Bader J, Janicot S, Mechoso CR (2012) Tropical SST and Sahel rainfall: a non-stationary relationship. Geophys Res Lett 39:L12705. doi:10.1029/2012GL052423

    Article  Google Scholar 

  • Lu J, Greatbatch RJ (2002) The changing relationship between the NAO and northern hemisphere climate variability. Geophys Res Lett 29(7):1–4. doi:10.1029/2001GL014052

    Article  Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteor Soc 78:1069–1079

    Article  Google Scholar 

  • Mariotti A, Zeng N, Lau KM (2002) Euro-Mediterranean rainfall and ENSO: a seasonally varying relationship. Geophys Res Lett 29(12):1621. doi:10.1029/2001GL014248

    Article  Google Scholar 

  • Mathieu PP, Sutton RT, Dong B, Collins M (2004) Predictability of winter climate over the North Atlantic European region during ENSO events. J Clim 17(1996):1953–1974. doi:10.1175/1520-0442(2004)017<1953:POWCOT>2.0.CO;2

    Article  Google Scholar 

  • Matsuura K,Willmott CJ, Terrestrial Precipitation (2009) 1900-2008 Gridded Monthly Time Series version 2.01, http://climate.geog.udel.edu/climate/html_pages/

  • Meng Q, Latif M, Park W, Keenlyside NS, Semenov VA, Martin T (2012) Twentieth century Walker Circulation change: data analysis and model experiments. Clim Dyn 38:1757–1773. doi:10.1007/s00382-011-1047-8

    Article  Google Scholar 

  • Mo KC, Livezey RE (1986) Tropical-extratropical geopotential height teleconnections during the Northern Hemisphere winter. Monsoon Weather Rev 114:2488–2515

    Article  Google Scholar 

  • Moron M, Plaut G (2003) The impact of El Niño Southern Oscillation upon weather regimes over Europe and the North Atlantic boreal winter. Int J Climatol 23:363–379. doi:10.1002/joc.890

    Article  Google Scholar 

  • North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Monsoon Weather Rev 110:699–706. doi:10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2

    Article  Google Scholar 

  • Pozo-Vazquez D, Gomiz-Fortis SR, Tovar-Pescador J, Esteban-Parra MJ, Castro-Diez Y (2005) El Niño-southern oscillation events and associated European winter precipitation anomalies. Int J Climatol 25(1):17–31. doi:10.1002/joc.1097

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Rodwell MJ, Rowell DP, Folland CK (1999) Oceanic forcing of the wintertime North Atlantic oscillation and climate variability of northern Europe. Nature 10:1635–1647

    Google Scholar 

  • Ruiz-Barradas A, Carton JA, Nigam S (2003) Role of the atmosphere in climate variability of the tropical Atlantic. J Clim 16:2052–2065

    Article  Google Scholar 

  • Schneider U et al (2008) Global precipitation analysis products of the GPCC. Global Precipitation Climatology Centre, Offenbach

    Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296. doi:10.1175/2007JCLI2100.1

    Article  Google Scholar 

  • Sutton RT, Hodson DLR (2007) Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J Clim 20:891–907. doi:10.1175/JCLI4038.1

    Article  Google Scholar 

  • Toniazzo T, Scaife A (2006) The influence of ENSO on winter North Atlantic climate. Geophys Res Lett 33(24). doi:10.1029/2006GL027881

  • Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau NC, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103(C7):14291–14324. doi:10.1029/97JC01444

    Article  Google Scholar 

  • Van Loon H, Rogers J (1978) The seesaw in winter temperatures between Greenland and Northern Europe. Part I: general description. Monsoon Weather Rev 106:296–310

    Article  Google Scholar 

  • Van Oldenborgh GJ, Burgers G (2005) Searching for decadal variations in ENSO precipitation teleconnections. Geophys Res Lett 32:L15701. doi:10.1029/2005GL023110

    Article  Google Scholar 

  • Vicente-Serrano SM, López-Moreno JI (2008) Nonstationary influence of the North Atlantic Oscillation on European precipitation. J Geophys Res 113(D20):D20120. doi:10.1029/2008JD010382

    Article  Google Scholar 

  • Voldoire A, Sanchez-Gomez E, Salas y Mélia D, Decharme B, Cassou C, Sénési S, Valcke S et al (2013) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40(9–10):2091–2121. doi:10.1007/s00382-011-1259-y

    Article  Google Scholar 

  • Walker GT (1924) Correlation in seasonal variations of weather, IX A further study of world weather. Mem India Meteorol Dep 24(9):275–333

    Google Scholar 

  • Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the northern hemisphere winter. Monsoon Weather Rev 109:784–812. doi:10.1175/1520-0493(1981)109

    Article  Google Scholar 

  • Wang C (2002) Atlantic climate variability and its associated atmospheric circulation cells. J Clim 15(13):1516–1536. doi:10.1175/15200442(2002)015<1516:ACVAIA>2.0.CO;2

    Article  Google Scholar 

  • Wang C (2004) ENSO, climate variability and the Walker and Hadley circulations. In: Diaz HF, Bradley RS (eds) The Hadley circulation: present, past and future. Advances in global change research, vol 21. Springer, New York, pp 173–202

    Chapter  Google Scholar 

  • Wang C, Enfield DB (2003) A further study of the tropical western hemisphere warm pool. J Clim 16:1476–1493. doi:10.1175/1520-0442-16.10.1476

    Article  Google Scholar 

  • Wang C, Lee SK, Enfield DB (2008) Atlantic warm pool acting as a link between Atlantic multidecadal oscillation and Atlantic tropical cyclone activity. Geochem Geophys Geosyst 9:Q05V03. doi:10.1029/2007GC001809

  • Wilks DS (2005) Statistical methods in the atmospherics sciences. Academic Press. ISBN:13: 978-0-12-75196

  • Yeh SW, Kirtman BP, Kug JS, Park W, Latif M (2011) Natural variability of the central Pacific El Niño event on multi-centennial timescales. Geophys Res Lett 38(2). doi:10.1029/2010GL045886

  • Zanchettin D, Franks SW, Traverso P, Tomasino M (2008) On ENSO impacts on European wintertime rainfalls and their modulation by the NAO and the Pacific multi-decadal variability described through the PDO index. Int J Climat 28:995–1006. doi:10.1002/joc

    Article  Google Scholar 

  • Zhang L, Wang C, Wu L (2011) Low-frequency modulation of the Atlantic warm pool by the Atlantic multidecadal oscillation. Clim Dyn 39(7–8):1661–1671. doi:10.1007/s00382-011-1257-0

    Google Scholar 

Download references

Acknowledgments

We are indebted to CERFACS for providing the CNRM-CM5 control simulation, which has made possible this study. We thank to the University of Delaware, GPCC, NOAA, and the UK Met-Office for the provided data. The study has been partially supported by the National Spanish Projects: TRACS (CGL2009-10285) and MULCLIVAR (CGL2012-38923-C02-01). JLP also thanks the FPI grant BES-2010-042234 of the Ministerio de Economía y Competitividad of Spanish Goverment. We would like to thank the anonymous reviewers for their helpful comments, which greatly helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge López-Parages.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 766 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Parages, J., Rodríguez-Fonseca, B. & Terray, L. A mechanism for the multidecadal modulation of ENSO teleconnection with Europe. Clim Dyn 45, 867–880 (2015). https://doi.org/10.1007/s00382-014-2319-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2319-x

Keywords

Navigation