Skip to main content

Advertisement

Log in

High-resolution rainfall variability simulated by the WRF RCM: application to eastern France

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Weather Research and Forecasting (WRF) model, driven laterally by ERA-Interim reanalyses, is used here to downscale rainfall, at relatively high resolution (~8 km) over Burgundy (eastern France), during the period 1989–2009. Regional simulations are compared to the Météo-France Station Network (MFSN; 127 daily rain-gauge records), at various temporal scales, including interannual variability, the annual cycle, and weather types. Results show that the spatial distribution of WRF-simulated rainfall climatology is consistent with MFSN observation data, but WRF tends to overestimate annual rainfall by ~+15 %. At the interannual scale, WRF also performs very well (r ~ 0.8), despite almost constant, systematic overestimation. Only the average annual rainfall cycle is not accurately reproduced by WRF (r ~ 0.5), with rainfall overestimation in spring and summer, when convective rainfall prevails. During the winter season (October–March), when stratiform rainfall is prevalent, WRF performs better. Despite the biases for summertime convective events, these results suggest that high-resolution WRF simulations could successfully be used to document present and future climate variability at a regional scale. Nevertheless, because of overestimated convective rainfall, WRF-simulated rainfall should probably not be used directly to feed impact models, especially during the vegetative summer period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Angot A (1919) Régime pluviométrique de la France. Ann Géogr 151:1–27

    Article  Google Scholar 

  • Boé J, Terray L, Habets F, Martin E (2006) A simple statistical-dynamical downscaling scheme based on weather types and conditional resampling. J Geophys Res 111:D23106. doi:10.1029/2005JD006889

    Article  Google Scholar 

  • Cassou C, Terray L, Hurrell JW, Deser C (2004) North Atlantic winter climate regimes: spatial asymmetry, stationarity with time, and oceanic forcing. J Clim 17:1055–1068

    Article  Google Scholar 

  • Cassou C, Terray L, Phillips AS (2005) Tropical Atlantic influence on European heat waves. J Clim 18(15):2805–2811

    Article  Google Scholar 

  • Cassou C, Minvielle M, Terray L, Périgaud C (2010) A statistical–dynamical scheme for reconstructing ocean forcing in the Atlantic. Part I: weather regimes as predictors for ocean surface variables. Clim Dyn. doi:10.1007/s00382-010-0781-7

    Google Scholar 

  • Cattiaux J, Douville H, Ribes A, Chauvin F, Plante C (2012) Towards a better understanding of changes in wintertime cold extremes over Europe: a pilot study with CNRM and IPSL atmospheric models. Clim Dyn. doi:10.1007/s00382-012-1436-7

    Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surface—hydrology model with the Penn State–NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129:569–585

    Article  Google Scholar 

  • Crétat J, Pohl B (2012) How physical parameterizations can modulate internal variability in a regional climate model. J Atmos Sci 69:714–724. doi:10.1175/JAS-D-11-0109.1

    Article  Google Scholar 

  • Crétat J, Macron C, Pohl B, Richard Y (2011) Quantifying internal variability in a regional climate model: a case study for Southern Africa. Clim Dyn 37:1335–1356. doi:10.1007/s00382-011-1021-5

    Article  Google Scholar 

  • Crétat J, Pohl B, Richard Y, Drobinski P (2012) Uncertainties in simulating regional climate of Southern Africa: sensitivity to physical parameterizations using WRF. Clim Dyn 38:613–634. doi:10.1007/s00382-011-1055-8

    Article  Google Scholar 

  • Daly C, Conklin DR, Unsworth MH (2009) Local atmospheric decoupling in complex topography alters climate change impacts. Int J Climatol 30(12):1857–1864

    Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kallberg P, Kohler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thepaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Diaconescu EP, Laprise R, Sushama L (2007) The impact of lateral boundary data errors on the simulated climate of a nested regional climate model. Clim Dyn 28:333–350

    Article  Google Scholar 

  • Diday E, Simon JC (1976) Clustering analysis. In: Digital Pattern Recognition, Fu KS (eds) Communication and cybernetics, vol 10. Springer, New York, pp 47–94

  • Dudhia J (1989) Numerical study of convection observed during the winter experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107

    Article  Google Scholar 

  • Flaounas E, Bastin S, Janicot S (2011) Regional climate modelling of the 2006 West African monsoon: sensitivity to convection and planetary boundary layer parameterisation using WRF. Clim Dyn 36:1083–1105. doi:10.1007/s00382-010-0785-3

    Article  Google Scholar 

  • Friedl MA, McIver DK, Hodges JCF, Zhang XY, Muchoney D, Strahler AH, Woodcock CE, Gopal S, Schneider A, Cooper A, Baccini A, Gao F, Schaaf C (2002) Global land cover mapping from MODIS: algorithms and early results. Remote Sens Environ 83:287–302

    Article  Google Scholar 

  • Gerstengarbe FW, Werner PC (2009) A short update on Koeppen climate shifts in Europe between 1901 and 2003. Clim Change 92:99–107

    Article  Google Scholar 

  • Giorgi F (1995) Perspectives for regional earth system modeling. Global Planet Change 10:23–42

    Article  Google Scholar 

  • Giorgi F, Hewitson BC, Christensen J, Hulme M, Von Storch H, Whetton P, Jones R, Mearns L, Fu C (2001) Regional climate information—evaluation and projections. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Van Der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Contribution of Working Group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge. http://www.ipcc.ch (Chapter 10 of the IPCC WG1 Assessment)

  • Hastenrath S (1995) Recent advances in tropical climate prediction. J Clim 8:1519–1532

    Article  Google Scholar 

  • Hengl T, Heuvelink GBM, Rossiter DG (2007) About regression-kriging: from equations to case studies. Comput Geosci 33:1301–1315

    Article  Google Scholar 

  • Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment report (2007) Climate change 2007 (AR4): the physical science basis. In: Solomon S et al (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge. http://www.ipcc.ch/

  • Iorio J, Duffy P, Govindasamy B, Thompson S, Khairoutdinov M, Randall D (2004) Effects of model resolution and subgrid-scale physics on the simulation of precipitation in the continental United States. Clim Dyn 23:243–258

    Article  Google Scholar 

  • Kain JS (2004) The Kain-Fritsch convective parameterization: an update. J Appl Meteor 43:170–181

    Article  Google Scholar 

  • Köppen W (1936) Das geographische system der Klimate. In: Köppen W, Geiger R (eds) Handbuch der Klimatologie, Bd. Gebr Borntröger I. Berlin, pp C1–C44

  • Laprise R (2008) Regional climate modelling. J Comput Phys 227:3641–3666

    Article  Google Scholar 

  • Leduc M, Laprise R (2009) Regional climate model sensitivity to domain size. Clim Dyn 32:833–854. doi:10.1007/s00382-008-0400-z

    Article  Google Scholar 

  • Lloyd CD (2010) Nonstationary models for exploring and mapping monthly precipitation in the United Kingdom. Int J Climatol 30:390–405. doi:10.1002/joc.1892

    Google Scholar 

  • Michelangeli PA, Vautard R, Legras B (1995) Weather regimes: recurrence and quasi stationarity. J Atmos Sci 52:1237–1256

    Article  Google Scholar 

  • Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaer DP, Stouffer RJ (2008) Stationarity is dead: whither water management? Science 319(5863):573–574. doi:10.1126/science.1151915

    Article  Google Scholar 

  • Mlawer E, Taubman S, Brown P, Iacono M, Clough S (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J Geophys Res 102:16663–16682

    Article  Google Scholar 

  • Morrison H, Thompson G, Tatarskii V (2009) Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: comparison of one-and two-moment schemes. Mon Weather Rev 137:991–1007

    Article  Google Scholar 

  • Pebesma EJ (2004) Multivariate geostatistics in S: gstat package. Comput Geosci 30(7):683–691

    Article  Google Scholar 

  • Pohl B, Crétat J, Camberlin P (2011) Testing WRF capability in simulating the atmospheric water cycle over Equatorial East Africa. Clim Dyn 37:1357–1379

    Article  Google Scholar 

  • Rauscher SA, Seth A, Qian JH, Camargo SJ (2006) Domain choice in an experimental nested modeling prediction system for South America. Theor Appl Climatol 86:229–246

    Article  Google Scholar 

  • Seth A, Giorgi F (1998) The effects of domain choice on summer precipitation simulation and sensitivity in a regional climate model. J Clim 11:2698–2712

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda M, Huang XY, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR technical note, NCAR/TN\u2013475?STR, 123 pp

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Sylla MB, Coppola E, Mariotti L, Giorgi F, Ruti PM, Dell’Aquila A, Bi X (2009) Multiyear simulation of the African climate using a regional climate model (RegCM3) with the high resolution ERA-interim reanalysis. Clim Dyn. doi:10.1007/s00382-009-0613-9

    Google Scholar 

  • Von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, Cambridge 484 p

    Google Scholar 

  • Wakazuki Y, Kanada S, Muroi C, Hashimoto A, Kato T, Nakamura M, Noda A, Yoshizaki M, Yasunaga K (2007) Regional climate projection experiments on the Baiu frontal activity around the Japan islands using a non-hydrostatic cloud-system-resolving model. J Earth Sim 8:13–25

    Google Scholar 

  • Wehner M, Smith R, Bala G, Duffy P (2010) The effect of horizontal resolution on simulation of very extreme US precipitation events in a global atmosphere model. Clim Dyn 34:241–247

    Article  Google Scholar 

  • Wilks DS (2006) Statistical methods in the atmospheric sciences. Elsevier, Amsterdam

    Google Scholar 

  • World Meteorological Organization (WMO) (2011) Climate knowledge for action: a global framework for climate service—empowering the most vulnerable, WMO/TD-No. 1065, p 240

  • Xu Y, Castel T, Richard Y, Cuccia C, Bois B (2012) Burgundy regional climate change and its potential impact on grapevines. Clim Dyn 39:1613–1626. doi:10.1007/s00382-011-1284-x

    Article  Google Scholar 

Download references

Acknowledgments

We thank Geoffrey Klein for his help in data processing and analysis, and Damien Boulard for his many helpful comments on this paper. Two anonymous reviewers are acknowledged for their constructive comments and suggestions, which helped us to improve the manuscript. The WRF model was obtained from the University Corporation for Atmospheric Research website (http://www.mmm.ucar.edu/wrf/users/download/get_source.html). The ERA-Interim data were provided by the ECMWF Meteorological Archival and Retrieval System (MARS). Calculations were performed using HPC resources from DSI-CCUB (Université de Bourgogne) and Conseil Régional de Haute-Normandie (CRIHAN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Marteau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marteau, R., Richard, Y., Pohl, B. et al. High-resolution rainfall variability simulated by the WRF RCM: application to eastern France. Clim Dyn 44, 1093–1107 (2015). https://doi.org/10.1007/s00382-014-2125-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2125-5

Keywords

Navigation