Skip to main content

Advertisement

Log in

Comparing modeled and observed changes in mineral dust transport and deposition to Antarctica between the Last Glacial Maximum and current climates

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Mineral dust aerosols represent an active component of the Earth’s climate system, by interacting with radiation directly, and by modifying clouds and biogeochemistry. Mineral dust from polar ice cores over the last million years can be used as paleoclimate proxy, and provide unique information about climate variability, as changes in dust deposition at the core sites can be due to changes in sources, transport and/or deposition locally. Here we present results from a study based on climate model simulations using the Community Climate System Model. The focus of this work is to analyze simulated differences in the dust concentration, size distribution and sources in current climate conditions and during the Last Glacial Maximum at specific ice core locations in Antarctica, and compare with available paleodata. Model results suggest that South America is the most important source for dust deposited in Antarctica in current climate, but Australia is also a major contributor and there is spatial variability in the relative importance of the major dust sources. During the Last Glacial Maximum the dominant source in the model was South America, because of the increased activity of glaciogenic dust sources in Southern Patagonia-Tierra del Fuego and the Southernmost Pampas regions, as well as an increase in transport efficiency southward. Dust emitted from the Southern Hemisphere dust source areas usually follow zonal patterns, but southward flow towards Antarctica is located in specific areas characterized by southward displacement of air masses. Observations and model results consistently suggest a spatially variable shift in dust particle sizes. This is due to a combination of relatively reduced en route wet removal favouring a generalized shift towards smaller particles, and on the other hand to an enhanced relative contribution of dry coarse particle deposition in the Last Glacial Maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Albani S, Delmonte B, Maggi V, Baroni C, Petit JR, Stenni B, Mazzola C, Frezzotti M (submitted) Last glacial to Holocene large-scale and regional atmospheric and dust changes at Talos Dome, East Antarctica. Geophys Res Lett

  • Alfaro SC, Gomes L (2001) Modeling mineral aerosol production by wind erosion: emission intensities and aerosol size distributions in source areas. J Geophys Res 106(D16):18,075–18,084

    Google Scholar 

  • Andersen KK, Ditlevsen PD (1998) Glacial/interglacial variations of meridional transport and washout of dust: a one-dimensional model. J Geophys Res 103(D8):8955–8962

    Article  Google Scholar 

  • Andersen KK, Armengaud A, Genthon C (1998) Atmospheric dust under glacial and interglacial conditions. Geophys Res Lett 25(13):2281–2284

    Article  Google Scholar 

  • Basile I, Grousset FE, Revel M, Petit J-R, Biscaye PE, Barkov NI (1997) Patagonian origin of glacial dust deposited in East Antarctica (Vostok and Dome C) during glacial stages 2, 4 and 6. Earth Planet Sci Lett 146:573–589

    Article  Google Scholar 

  • Bigler M, Rothlisberger R, Lambert F, Stocker TF, Wagenbach D (2006) Aerosol deposited in East Antarctica over the last glacial cycle: detailed apportionment of continental and sea-salt contributions. J Geophys Res 111:D08205. doi:10.1029/2005JD006469

  • Bory AE, Wolff E, Mulvaney R, Jagoutz E, Wegner A, Ruth U, Elderfield H (2010) Multiple sources supply eolian mineral dust to the Atlantic sector of coastal Antarctica: evidence from recent snow layers at the top of Berkner Island ice sheet. Earth Planet Sci Lett 291:138–148. doi:10.1016/j.epsl.2010.01.006

    Article  Google Scholar 

  • Burn-Nunes LJ, Vallelonga P, Loss RD, Burton GR, Moy A, Curran M, Hong S, Smith AM, Edwards R, Morgan VI, Rosman KJR (2011) Seasonal variability in the input of lead, barium and indium to Law Dome, Antarctica. Geochimica et Cosmochimica Acta 75:1–20

    Article  Google Scholar 

  • Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD (2006) The community climate system model version 3 (CCSM3). J Climate 19(11):2122–2143

    Article  Google Scholar 

  • Cunningham WC, Zoller WH (1981) The chemical composition of remote area aersols. J Aerosol Sci 12(4):367–384

    Article  Google Scholar 

  • Delaygue G, Masson V, Jouzel J, Koster RD, Healy RJ (2000) The origin of Antarctic precipitation: a modelling approach. Tellus B 52:19–36

    Article  Google Scholar 

  • Delmonte B, Petit JR, Maggi V (2002) Glacial to Holocene implications of the new 27000-year dust record from the EPICA Dome C (East Antarctica) ice core. Clim Dyn 18:647–660. doi: 10.1007/s00382-001-0193-9

    Google Scholar 

  • Delmonte B, Petit J-R, Andersen KK, Basile-Doelsch I, Maggi V, Lipenkov VY (2004a) Dust size evidence for opposite regional atmospheric circulation changes over east Antarctica during the last climatic transition. Clim Dyn 23:427–438. doi:10.1007/s00382-004-0450-9

    Article  Google Scholar 

  • Delmonte B, Basile-Doelsch I, Petit J-R, Maggi V, Revel-Rolland M, Michard A, Jagoutz E, Grousset F (2004b) Comparing the Epica and Vostok dust records during the last 220,000 years: stratigraphical correlation and provenance in glacial periods. Earth-Sci Rev 66:63–87

    Article  Google Scholar 

  • Delmonte B, Petit J-R, Basile-Doelsch I, Jagoutz E, Maggi V (2007) Late Quaternary Interglacials in East Antarctica From Ice-Core Dust Records. In: Sirocko F, Litt T, Clausen M (eds) The climate of past interglacials. Elsevier, Amsterdam, pp 53–73

    Chapter  Google Scholar 

  • Delmonte B, Delmas RJ, Petit J-R (2008a) Comment on ‘‘Dust provenance in Antarctic ice during glacial periods: from where in southern South America?’’ by D. M. Gaiero. Geophys Res Lett 35:L08707. doi:10.1029/2007GL032075

  • Delmonte B, Andersson PS, Hansson M, Schöberg H, Petit J-R, Basile-Doelsch I, Maggi V (2008b) Aeolian dust in East Antarctica (EPICA-Dome C and Vostok): provenance during glacial ages over the last 800 kyr. Geophys Res Lett 35:L07703. doi:10.1029/2008GL033382

  • Delmonte B, Andersson PS, Schöberg H, Hansson M, Petit J-R, Delmas R, Gaiero DM, Maggi V, Frezzotti M (2010a) Geographic provenance of aeolian dust in East Antarctica during Pleistocene glaciations: preliminary results from Talos Dome and comparison with East Antarctic and new Andean ice core data. Quat Sci Rev. doi:10.1016/j.quascirev.2009.05.010

  • Delmonte B, Baroni C, Andersson PS, Schoberg H, Hansson M, Aciego S, Petit J-R, Albani S, Mazzola C, Maggi V, Frezzotti M (2010b) Aeolian dust in the Talos Dome ice core (East Antarctica, Pacific/Ross Sea sector): Victoria Land versus remote sources over the last two climate cycles. J Quat Sci. doi:10.1002/jqs.1418

  • Dentener F, Carmichael G, Zhang Y, Lelieveld J, Crutzen P (1996) Role of mineral aerosol as a reactive surface in the global troposphere. J Geophys Res 101(D17):22869–22889

    Article  Google Scholar 

  • Dickerson RR, Kondragunta S, Stenchikov G, Civerolo KL, Doddridge BG, Holben BN (1997) The impact of aerosols on solar ultraviolet radiation and photochemical smog. Science. doi:10.1126/science.278.5339.827

  • EPICA community members (2004) Eight glacial cycles from an Antarctic ice core. Nature, VOL 429, 10 JUNE 2004

  • EPICA Community Members (2006) One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444:195–198. doi:10.1038/nature05301

    Article  Google Scholar 

  • Fischer H, Siggaard-Andersen ML, Ruth U, Rothlisberger R, Wolff E (2007) Glacial/interglacial changes in mineral dust and sea-salt records in polar ice cores: sources, transport, and deposition. Rev Geophys 45:RG1002. doi:10.1029/2005RG000192

  • Frezzotti M, Urbini S, Proposito M, Scarchilli C, Gandolfi S (2007) Spatial and temporal variability of surface mass balance near Talos Dome, East Antarctica. J Geophys Res 112:F02032. doi:10.1029/2006JF000638

  • Gabrielli P, Wegner A, Petit J-R, Delmonte B, DeDeckker P, Gaspari V, Fisher H, Ruth U, Kriews M, Boutron C, Cescon P, Barbante C (2010) A major glacial-interglacial change in aeolian dust composition inferred from Rare Earth Elelments in Antarctica ice. Quat Sci Rev. doi:10.1016/j.quascirev.2009.09.002

  • Gaiero DM (2008) Reply to comment by B. Delmonte et al. on “Dust provenance in Antarctic ice during glacial periods: from where in southern South America?” Geophys Res Lett 35:L08708. doi:10.1029/2007GL032477

  • Gaiero DM, Probst J-L, Depetris PJ, Bidart SM, Leleyter L (2003) Iron and other transition metals in Patagonian riverborne and windborne materials: geochemical control and transport to the southern South Atlantic Ocean. Geochimica et Cosmochimica Acta 67(19):3603–3623. doi:10.1016/S0016-7037(03)00211-4

  • Gaiero DM, Brunet F, Probst J-L, Depretis PJ (2007) A uniform isotopic and chemical signature of dust exported from Patagonia: rock sources and occurrence in southern environments. Chem Geol 238(1–2):107–120

    Article  Google Scholar 

  • Gassó S, Stein AF (2007) Does dust from Patagonia reach the sub-Antarctic Atlantic Ocean? Geophys Res Lett 34:L01801. doi:10.1029/2006GL027693

  • Gassó S, Stein A, Marino F, Castellano E, Udisti R, Ceratto J (2010) A combined observational and modeling approach to study modern dust transport from the Patagonia desert to East Antartica. Atmos Chem Phys 10:8287–8303. doi:10.5194/acp-10-8287-2010

    Google Scholar 

  • Genthon C (1992) Simulations of desert dust and sea-salt aerosols in Antarctica with a general circulation model of the atmosphere. Tellus 44B:371–389

    Google Scholar 

  • Ginoux P, Chin M, Tegen I, Prospero J, Holben B, Dubovik O, Lin S-J (2001) Sources and distributions of dust aerosols simulated with the GOCART model. J Geophys Res 106(D17):20255–20273

    Article  Google Scholar 

  • Göktas F, Fischer H, Oerter H, Weller R, Sommer S, Miller H (2002) A glacio-chemical characterization of the new EPICA deep-drilling site on Amundsenien, Dronning Maud Land, Antarctica. Ann Glaciol 35:347–354

    Article  Google Scholar 

  • Grousset FE, Biscaye PE (2005) Tracing dust sources and transport patterns using Sr, Nd and Pb isotopes. Chem Geol 222:149–167

    Article  Google Scholar 

  • Grousset FE, Biscaye PE, Revel M, Petit J-R, Pye K, Joussaume S, Jouzel J (1992) Antarctic (Dome C) ice-core dust at 18 k.y.B.P.: Isotopic constraints on origins. Earth Planet Sci Lett 111:175–182

    Google Scholar 

  • Han Q, Zender CS (2010) Desert dust aerosol age characterized by mass-age tracking of tracers. J Geophys Res 115:D22201. doi:10.1029/2010JD014155

  • Haxeltine A, Prentice IC (1996) BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochem Cycles 10(4):693–709

    Article  Google Scholar 

  • Holben BN, Eck TF, Slutsker I, Tanré D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman YJ, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998) AERONET: a federated instrument network and data archive for aerosol characterization. Remote Sens Env 66:1–16

    Article  Google Scholar 

  • Hou SG, Li YS, Xiao CD, Ren JW (2007) Recent accumulation rate at Dome Argus, Antarctica. Chinese Sci Bull J 52(3):428–431

    Article  Google Scholar 

  • Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G, Brooks N, Cao JJ, Boyd PW, Duce RA, Hunter KA, Kawahata H, Kubilay N, LaRoche J, Liss PS, Mahowald NM, Prospero JM, Ridgwell AJ, Tegen I, Torres R (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308:67. doi:10.1126/science.1105959

    Article  Google Scholar 

  • Johnson MS, Meskhidze N, Solmon F, Gassó S, Chuang PY, Gaiero DM, Yantosca RM, Wu S, Wang Y, Carouge C (2010) Modeling dust and soluble iron deposition to the South Atlantic Ocean. J Geophys Res 115:D15202. doi: 10.1029/2009JD013311

  • Joussaume S (1990) Three-dimensional simulations of the atmospheric cycle of desert dust particles using a general circulation model. J Geophys Res 95(D2):1909–1941

    Article  Google Scholar 

  • Joussaume S (1993) Paleoclimatic tracers: an investigation using an atmospheric general circulation model under ice age conditions 1. Desert Dust J Geophys Res 98(D2):2767–2805

    Article  Google Scholar 

  • Junge CE (1977) Processes responsible for the trace content in precipitation. In: Isotopes and impurities in ice and snow, IAHS-AISH Publ. 118, Int Assoc Hydrol Sci Grenoble

  • Kameda T, Motoyama H, Fujita S, Takahashi S (2008) Temporal and spatial variability of surface mass balance at Dome Fuji, East Antarctica, by the stake method from 1995 to 2006. J Glaciol 54(184):107–116

    Article  Google Scholar 

  • Kaufman YJ, Tanré D, Boucher O (2002) A satellite view of aerosols in the climate system. Nature 419:215–223

    Article  Google Scholar 

  • Kiehl JT, Shields CA, Hack JJ, Collins WD (2006) The climate sensitivity of the community climate system model version 3 (CCSM3). J Clim 19(11):2584–2596

    Article  Google Scholar 

  • King JC, Turner J (1997) Antarctic meteorology and climatology. In: Dessler AJ, Houghton JT, Rycroft MJ (eds) Cambridge atmospheric and space science series. Cambridge University Press, Cambridge

    Google Scholar 

  • Kohfeld KE, Harrison SP (2001) DIRTMAP: the geological record of dust. Earth Sci Rev 54:81–114

    Article  Google Scholar 

  • Krinner G, Genthon C (1998) GCM simulations of the Last Glacial Maximum surface climate of Greenland and Antarctica. Clim Dyn 14(10):741–758

    Google Scholar 

  • Krinner G, Genthon C (2003) Tropospheric transport of continental tracers towards Antarctica under varying climatic conditions. Tellus 55B:54–70

    Google Scholar 

  • Krinner G, Petit J-R, Delmonte B (2010) Altitude of atmospheric tracer transport towards Antarctica in present and glacial climate. Quat Sci Rev. doi:10.1016/j.quascirev.2009.06.020

  • Lambert F, Delmonte B, Petit J-R, Bigler M, Kaufmann PR, Hutterli MA, Stocker TF, Ruth U, Steffensen JP, Maggi V (2008). Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 452. doi:10.1038/nature06763

  • Lanci L, Delmonte B, Maggi V, Petit J-R, Kent DV (2008) Ice magnetization in the EPICA-Dome C ice core: implication for dust sources during glacial and interglacial periods. J Geophys Res 113:D14207. doi:10.1029/2007JD009678

  • Legrand M, Mayewski P (1997) Glaciochemistry of polar ice cores: a review. Rev Geophys 35(3):219–243

    Article  Google Scholar 

  • Levin Z, Ganor E, Gladstein V (1996) The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean. J Appl Met 35(9):1511–1523

    Article  Google Scholar 

  • Li F, Ginoux P, Ramaswamy V (2008) Distribution, transport, and deposition of mineral dust in the Southern Ocean and Antarctica: Contribution of major sources. J Geophys Res 113:D10207. doi:10.1029/2007JD009190

  • Li F, Ginoux P, Ramaswamy V (2010a) Transport of patagonian dust to Antarctica. J Geophys Res 115:D18217. doi:10.1029/2009JD012356

  • Li F, Ramaswamy V, Ginoux P, Broccoli AJ, Delworth T, Zeng F (2010b) Toward understanding the dust deposition in Antarctica during the Last Glacial Maximum: sensitivity studies on plausible causes. J Geophys Res 115:D24120. doi:10.1029/2010JD014791

  • Lunt DJ, Valdes PJ (2001) Dust transport to Dome C, Antarctica, at the Last Glacial Maximum and present day. Geophys Res Lett 28(2):295–298

    Article  Google Scholar 

  • Lunt DJ, Valdes PJ (2002a) Dust deposition and provenance at the Last Glacial Maximum and present day. Geophys Res Lett. doi:10.1029/2002GL015656

  • Lunt DJ, Valdes PJ (2002b) The modern dust cycle: comparison of model results with observations and study of sensitivities. J Geophys Res 107:D23. doi:10.1029/2002JD002316

  • Mahowald NM (2007) Anthropocene changes in desert area: Sensitivity to climate model predictions. Geophys Res Lett 34:L18817. doi:10.1029/2007GL030472

  • Mahowald NM, et al (2008) Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Global Biogeochem Cycles 22:GB4026. doi:10.1029/2008GB003240

  • Mahowald N, Kohfeld K, Hansson M, Balkanski Y, Harrison SP, Prentice IC, Schulz M, Rodhe H (1999) Dust sources and deposition during the Last Glacial Maximum and current climate: a comparison of model results with paleodata from ice cores and marine sediments. J Geophys Res 104(D13):15895–15916

    Article  Google Scholar 

  • Mahowald NM, Muhs DR, Levis S, Rasch PJ, Yoshioka M, Zender CS, Luo C (2006) Change in atmospheric mineral aerosols in response to climate: last glacial period, preindustrial, modern, and doubled carbon dioxide climates. J Geophys Res 111:D10202

    Article  Google Scholar 

  • Mahowald NM, Engelstaedter S, Luo C, Sealy A, Artaxo P, Benitez-Nelson C, Bonnet S, Chen Y, Chuang PY, Cohen DD, Dulac F, Herut B, Johansen AM, Kubilay N, Losno R, Maenhaut W, Paytan A, Prospero JM, Shank LM, Siefert RL (2009) Atmospheric iron deposition: global distribution, variability, and human perturbations. Ann Rev Mar Sci 1:245–278. doi:10.1146/annurev.marine.010908.163727

    Article  Google Scholar 

  • Mahowald NM, Albani S, Engelstaedter S, Winckler G, Goman M (2011) Model insight into paleodust records. Quat Sci Rev 30(7–8):832–854

    Article  Google Scholar 

  • Marino F, Castellano E, Ceccato D, De Deckker P, Delmonte B, Ghermanti G, Maggi V, Petit J-R, Revel-Rolland M, Udisti R (2008) Defining the geochemical composition of the EPICA Dome C ice core dust during the last glacial-interglacial cycle. Geochem Geophys Geosyst 9:Q10018. doi:10.1029/2008GC002023

  • Marino F, Castellano E, Nava S, Chiari M, Ruth U, Wegner A, Lucarelli F, Udisti R, Delmonte B, Maggi V (2009) Coherent composition of glacial dust on opposite sides of the East Antarctic Plateau inferred from the deep EPICA ice cores. Geophys Res Lett 36:L23703. doi:10.1029/2009GL040732

  • Martin JH, Gordon RM, Fitzwater SE (1990) Iron in Antarctic waters. Nature 353(6340):123

    Article  Google Scholar 

  • Martínez-García A, Rosell-Melé A, Geibert W, Gersonde R, Masqué P, Gaspari V, Barbante C (2009) Links between iron supply, marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma. Paleoceanography 24:PA1207. doi:10.1029/2008PA001657

  • Masson-Delmotte V, Stenni B, Pol K, Braconnot P, Cattani O, Falourd S, Kageyama M, Jouzel J, Landais A, Minster B, Barnola JM, Chappellaz J, Krinner G, Johnsen S, Röthlisberger R, Hansen J, Mikolajewicz U, Otto-Bliesner B (2010) EPICA Dome C record of glacial and interglacial intensities. Quat Sci Rev 29:113–128. doi:10.1016/j.quascirev.2009.09.030

    Article  Google Scholar 

  • McConnell JR, Aristarain AJ, Banta JR, Edwards PR, Simoes JC (2007) 20th-Century doubling in dust archived in an Antarctic Peninsula ice core parallels climate change and desertification in South America. PNAS 104(14):5743–5748

    Google Scholar 

  • McTainsh GH, Lynch AW (1996) Quantitative estimates of the effect of climate change on dust storm activity in Australia during the Last Glacial Maximum. Geomorphology 17:263–271

    Article  Google Scholar 

  • Miller RL, Tegen I (1998) Climate response to soil dust aerosols. J Clim 11(12):3247–3267

    Article  Google Scholar 

  • Mumford JW, Peel DA (1982) Microparticles, marine salts and stable isotopes in a shallow firn core from the Antarctic Peninsula. Br Antarct Surv Bull 56:37–47

    Google Scholar 

  • Noone D, Simmonds I (2002) Annular variations in moisture transport mechanisms and the abundance of δ18O in Antarctic snow. J Geophys Res 107:D24. doi:10.1029/2002JD002262

  • Otto-Bliesner BE, Brady EC, Clauzet G, Tomas R, Levis S, Kothavala Z (2006) Last Glacial Maximum and holocene climate in CCSM3. J Clim 19:2526–2544

    Article  Google Scholar 

  • Parish TR, Bromwich DH (2007) Reexamination of the near-surface airflow over the antarctic continent and implications on atmospheric circulations at high southern latitudes. Mon Weather Rev 135(5):1961–1973. doi: 10.1175/MWR3374.1

    Google Scholar 

  • Penner JE et al (2001) Aerosols, their direct and indirect effect. In: Houghton JT et al (eds) Climate change 2001: the scientific basis. Cambridge University Press, New York

    Google Scholar 

  • Petit J-R, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davisk M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, saltzmank E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399(3):429–436

    Google Scholar 

  • Petit JR, Delmonte B (2009) A model for large glacial–interglacial climate-induced changes in dust and sea salt concentrations in deep ice cores (central Antarctica): palaeoclimatic implications and prospects for refining ice core chronologies. Tellus B 61:768–790. doi: 10.1111/j.1600-0889.2009.00437.x

    Google Scholar 

  • Prospero JM, Lamb PJ (2003) African droughts and dust transport to the caribbean: climate change implications. Science 302(5647):1024–1027. doi: 10.1126/science.1089915

    Google Scholar 

  • Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone mapping spectrometer (TOMS) Absorbing Aerosol Product Rev Geophys 40(1):1002. doi:10.1029/2000RG000095

    Google Scholar 

  • Revel-Rolland M, De Deckker P, Delmonte P, Hesse PP, Magee JW, Basile-Doelsch I, Grousset F, Bosch D (2006) Eastern Australia: a possible source of dust in East Antarctica interglacial ice. Earth Planet Sci Lett 249:1–13

    Article  Google Scholar 

  • Rojas M, Moreno P, Kageyama M, Crucifix M, Hewitt C, Abe-Ouchi A, Ohgaito R, Brady EC, Hope P (2009) The Southern Westerlies during the Last Glacial Maximum in PMIP2 simulations. Clim Dyn 32:525–548. doi:10.1007/s00382-008-0421-7

    Article  Google Scholar 

  • Rosenfeld D, Rudich Y, Lahav R (2001) Desert dust suppressing precipitation: a possible desertification feedback loop. PNAS 98(11):5975–5980

    Article  Google Scholar 

  • Royer A, De Angelis M, Petit J-R (1983) A 30000 year record of physical and optical properties of microparticles from an east antarctic ice core and implications for paleoclimate reconstruction models. Climatic Change 5:381–412

    Google Scholar 

  • Ruth U, Wagenbach D, Steffensen JP, Bigler M (2003) Continuous record of microparticle concentration and size distribution in the central Greenland NGRIP ice core during the last glacial period. J Geophys Res 108:D3. doi:10.1029/2002JD002376

  • Ruth U, Barbante C, Bigler M, Delmonte B, Fischer H, Gabrielli P, Gaspari V, Kaufmann P, Lambert F, Maggi V, Marino F, Petit J-R, Udisti R, Wagenbach D, Wegner A, Wolff EW (2008) Proxies and Measurement Techniques for Mineral Dust in Antarctic Ice Cores. Environ Sci Technol 42 (15): 5675–5681, doi: 10.1021/es703078z

    Google Scholar 

  • Siggaard-Andersen M-L, Gabrielli P, Steffensen JP, Strømfeldt T, Barbante C, Boutron C, Fischer H, Miller H (2007) Soluble and insoluble lithium dust in the EPICA DomeC ice core–implications for changes of the East Antarctic dust provenance during the recent glacial–interglacial transition. Earth Planet Sci Lett 258:32–43

    Article  Google Scholar 

  • Smirnov A, Holben BN, Savoie D, Prospero JM, Kaufman YJ, Tanré D, Eck TF, Slutsker I (2000) Relationship between column aerosol optical thickness and in situ ground based dust concentrations over Barbados. Geophys Res Lett 27:1643–1646

    Article  Google Scholar 

  • Sokolik IN, Winker DM, Bergametti G, Gillette DA, Carmichael G, Kaufman YJ, Gomes L, Schuetz L, Penner JE (2001) Introduction to special section: outstanding problems in quantifying the radiative impacts of mineral dust. J Geophys Res 106:18015–18027

    Article  Google Scholar 

  • Sommer S, Wagenbach D, Mulvaney R, Fischer H (2000) Glacio-chemical study spanning the past 2 kyr on three ice cores from Dronning Maud Land, Antarctica 2. Seasonally resolved chemical records. J Geophys Res 105(D24):29423–29433

    Article  Google Scholar 

  • Sugden DE, McCulloch RD, Bory AJM, Hein AS (2009) Influence of Patagonian glaciers on Antarctic dust deposition during the last glacial period. Nature Geosci 2. doi:10.1038/NGEO474

  • Tanaka TY, Chiba M (2006) A numerical study of the contributions of dust source regions to the global dust budget. Global Planet Change 52:88–104

    Article  Google Scholar 

  • Tegen I (2003) Modeling the mineral dust aerosol cycle in the climate system. Quat Sci Rev 22:1821–1834

    Article  Google Scholar 

  • Tegen I, Fung I (1994) Modeling of mineral dust in the atmosphere–sources, transport, and optical-thickness. J Geophys Res 99(D11):22897–22914

    Article  Google Scholar 

  • Tegen I, Lacis AA (1996) Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J Geophys Res 101(D14):19237–19244

    Article  Google Scholar 

  • Thompson LG (1975) Variations in microparticle concentration, size distribution and elemental composition found in Camp Century, Greenland, and Byrd station, Antarctica, deep ice cores. In: Isotopes and Impurities in Snow and Ice (Proceedings of a symposium held during the XVI Assembly of the International Union of Geodesy and Geophysics at Grenoble, August–September 1975). IAHS Publ. no. 118

  • Thompson LG (1977) Microparticles, ice sheets and climate. Reports of the Institute of Polar Studies, Ohio State University, No. 64, 148 pp

  • Thompson LG, Mosley-Thompson E, Petit JR (1981) Glaciological interpretation of microparticle concentrations from the French 905-m Dome C, Antarctica core. In: Sea Level, Ice, and Climatic Change (Proceedings of the Canberra Symposium, December 1979). IAHS Publ. no. 131

  • Thompson LG, Mosley-Thompson E, Davis ME, Lin PN, Henderson KA, Cole-Dai J, Bolzan JF, Liu KB (1995) Late-glacial stage and Holocene tropical ice core records from Huascarán, Peru. Science 269:46–50

    Article  Google Scholar 

  • Unnerstad L, Hansson M (2001) Simulated airborne particle size distributions over Greenland during Last Glacial Maximum. Geophys Res Lett 28(2):287–290

    Article  Google Scholar 

  • Vallelonga P, Gabrielli P, Balliana E, Wegner A, Delmonte B, Buretta C, Burton G, Vanhaecke F, Rosman KJR, Hong S, Boutron CF, Cescon P, Barbante C (2010) Lead isotopic compositions in the EPICA Dome C ice core and Southern Hemisphere Potential Source Areas. Quat Sci Rev. doi:10.1016/j.quascirev.2009.06.019

  • Washington WM, Parkinson CL (2005) An introduction to three-dimensional climate modeling, 2nd edn. University Science Books, Sausalito, California

    Google Scholar 

  • Weller R, Wöltjen J, Piel C, Resenberg R, Wagenbach D, König-Langlo G, Kriews M (2008) Seasonal variability of crustal and marine trace elements in the aerosol at Neumayer station, Antarctica. Tellus 60B:742–752

    Google Scholar 

  • Werner M, Tegen I, Harrison SP, Kohfeld KE, Prentice IC, Balkanski Y, Rodhe H, Roelandt C (2002) Seasonal and interannual variability of the mineral dust cycle under present and glacial climate conditions. J Geophys Res 107(D24):4744. doi:10.1029/2002JD002365

    Google Scholar 

  • Winckler G, Fischer H (2006) 30,000 years of cosmic dust in Antarctic ice. Science 313:491

    Article  Google Scholar 

  • Wolff EW, et al (2006) Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature 440:23. doi:10.1038/nature04614

  • Wolff EW, Hall JS, Mulvaney R, Pasteur EC, Wagenbach D, Legrand M (1998) Relationship between chemistry of air, fresh snow and firn cores for aerosol species in coastal Antarctica. J Geophys Res 103(D9):11057–11070

    Article  Google Scholar 

  • Wurzler S, Reisin TG, Levin Z (2000) Modification of mineral dust particles by cloud processing and subsequent effects on drop size distributions. J Geophys Res 105(D4):4501–4512

    Article  Google Scholar 

  • Xu J, Hou S, Ren J, Petit J-R (2007) Insoluble dust in a new core from Dome Argus, central East Antarctica. J Glaciol 53(180):154–156

    Article  Google Scholar 

  • Zárate MA (2003) Loess of southern South America. Quat Sci Rev 22:1987–2006

    Article  Google Scholar 

  • Zender CS, Bian H, Newman D (2003) Mineral dust entrainment and deposition (DEAD) model: description and 1990s dust climatology. J Geophys Res 108(D14):4416. doi:10.1029/2002JD002775

    Google Scholar 

Download references

Acknowledgments

N. M. Mahowald and S. Albani acknowledge the support of NSF-0832782, NSF-0745961, NSF-0932946, NSF-1003509 and NASA-NNG06G127G. The computer simulations used in this study were performed at the National Center for Atmospheric Research, a National Science Foundation facility. S. Albani acknowledges funding from “Dote ricercatori”: FSE, Regione Lombardia. We gratefully acknowledge Joseph Prospero for providing us with dust surface concentration data from in situ measurements from the University of Miami Ocean Aerosol Network. We would also like to thank two anonymous reviewers for their constructive comments that helped improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Albani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albani, S., Mahowald, N.M., Delmonte, B. et al. Comparing modeled and observed changes in mineral dust transport and deposition to Antarctica between the Last Glacial Maximum and current climates. Clim Dyn 38, 1731–1755 (2012). https://doi.org/10.1007/s00382-011-1139-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1139-5

Keywords

Navigation