Skip to main content

Advertisement

Log in

Climate change projections and stratosphere–troposphere interaction

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Climate change is expected to increase winter rainfall and flooding in many extratropical regions as evaporation and precipitation rates increase, storms become more intense and storm tracks move polewards. Here, we show how changes in stratospheric circulation could play a significant role in future climate change in the extratropics through an additional shift in the tropospheric circulation. This shift in the circulation alters climate change in regional winter rainfall by an amount large enough to significantly alter regional climate change projections. The changes are consistent with changes in stratospheric winds inducing a change in the baroclinic eddy growth rate across the depth of the troposphere. A change in mean wind structure and an equatorward shift of the tropospheric storm tracks relative to models with poor stratospheric resolution allows coupling with surface climate. Using the Atlantic storm track as an example, we show how this can double the predicted increase in extreme winter rainfall over Western and Central Europe compared to other current climate projections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Blackmon ML (1976) A climatological spectral study of the 500 mb geopotential height of the northern hemisphere. J Atmos Sci 33:1607–1623

    Article  Google Scholar 

  • Boville BA (1984) The influence of the polar night jet on the tropospheric circulation in a GCM. J Atm Sci 41:1132–1142

    Article  Google Scholar 

  • Butchart N, Scaife AA (2001) Removal of chlorofluorocarbons through increased mass exchange between the stratosphere and troposphere in a changing climate. Nature 410:799–801

    Article  Google Scholar 

  • Butchart N, Cionni I, Eyring V, Shepherd TG, Waugh DW, Akiyoshi H, Austin J, Brühl C, Chipperfield MP, Cordero E, Dameris M, Deckert R, Dhomse S, Frith SM, Garcia RR, Gettelman A, Giorgetta MA, Kinnison DE, Li F, Mancini E, McLandress C, Pawson S, Pitari G, Plummer DA, Rozanov E, Sassi F, Scinocca JF, Shibata K, Steil B, Tian W (2010) Chemistry: climate model simulations of twenty-first century stratospheric climate and circulation changes. J Clim 23:5349–5374

    Article  Google Scholar 

  • Charlton-Perez A et al (2008) The frequency and dynamics of stratospheric sudden warmings in the twenty-first century. J Geophys Res 113:D16116. doi:10.1029/2007JD009571

    Article  Google Scholar 

  • Cordero EC, Forster PM (2006) Stratospheric variability and trends in models used for the IPCC AR4. Atmos Chem Phys 6:5369–5380

    Article  Google Scholar 

  • Dankers R, Feyen L (2008) Climate change impact on flood hazard in Europe. J Geophys Res 113:D19105. doi:10.1029/2007JD009719

    Article  Google Scholar 

  • Eady E (1949) Long waves and cyclone waves. Tellus 1:33–52

    Article  Google Scholar 

  • Frierson DMW, Lu J, Chen G (2007) Width of the Hadley cell in simple and comprehensive general circulation models. Geophys Res Lett 34:L18804. doi:10.1029/2007GL031115

    Article  Google Scholar 

  • Geng Q, Sugi M (2003) Possible change in extratropical cyclone activity due to enhanced greenhouse gases and sulphate aerosols: study with a high resolution AGCM. J Clim 16:2262–2274

    Article  Google Scholar 

  • Gillett NP (2005) Climate modelling: northern hemisphere circulation. Nature 437:496. doi:10.1038/437496a

    Article  Google Scholar 

  • Huebener H et al (2007) Ensemble climate simulations using a fully coupled ocean-troposphere-stratosphere general circulation model. Phil Trans R Soc A 365:2089–2101

    Article  Google Scholar 

  • Lambert SJ, Fyfe JC (2006) Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse warming experiments: results from the models participating in the IPCC diagnostic exercise. Clim Dyn 26:713–728

    Article  Google Scholar 

  • Legutke S, Voss R (1999) The Hamburg atmosphere-ocean coupled circulation model ECHO-G. Technical report, vol 18. Deutsches Klimarechenzentrum, Hamburg

    Google Scholar 

  • Manzini E, McFarlane NA (1998) The effect of varying the source spectrum of a gravity wave parameterization in a middle atmosphere general circulation model. J Geophys Res 103:31523–31539. doi:10.1029/98JD02274

    Article  Google Scholar 

  • Martin G et al (2006) The physical properties of the atmosphere in the New Hadley centre global atmospheric model (HadGEM1): Part I: model description and global climatology. J Clim 19:1274–1301

    Article  Google Scholar 

  • Matsueda M, Mizuta R, Kusunoki S (2009) Future change in wintertime atmospheric blocking simulated using a 20 km mesh atmospheric global circulation model. J Geophys Res 114:D12114. doi:10.1029/2009JD011919

    Article  Google Scholar 

  • McLandress C, Shepherd TG (2009) Simulated anthropogenic changes in the Brewer-Dobson circulation, including its extension to higher latitudes. J Clim 22:1516–1540

    Article  Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multi-model dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394

    Article  Google Scholar 

  • Morgenstern O, Akiyoshi H, Bekki S, Braesicke P, Butchart N, Chipperfield MP, Cugnet D, Deushi M, Dhomse SS, Garcia RR, Gettelman A, Gillett NP, Hardiman SC, Jumelet J, Kinnison DE, Lamarque J-F, Lott F, Marchand M, Michou M, Nakamura T, Olivie D, Peter T, Plummer D, Pyle JA, Rozanov E, Saint-Martin D, Scinocca JF, Shibata K, Sigmond M, Smale D, Teyssedre H, Tian W, Voldoire A, Yamashita Y (2009) Anthropogenic forcing of the northern annular mode in CCMVal-2 models. J Geophys Res 115:D00M03. doi:101029/2009JD013347

    Article  Google Scholar 

  • Morgenstern O et al (2010) Review of the formulation of present-generation stratospheric chemistry-climate models and associated external forcing. J Geophys Res 115:D00M02. doi:10.1029/2009JD013728

    Article  Google Scholar 

  • Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M, Stainforth DA (2004) Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430:768–772

    Article  Google Scholar 

  • Pawson S, Kodera K, Hamilton K, Shepherd TG, Beagley SR, Boville BA, Farrara JD, Fairlie TDA, Kitoh A, Lahoz WA, Langematz U, Manzini E, Rind DH, Scaife AA, Shibata K, Simon P, Swinbank R, Takacs L, Wilson RJ, Al-Saadi JA, Amodei M, Chiba M, Coy L, de Grandpre J, Eckman RS, Fiorino M, Grose WL, Koide H, Koshyk JN, Li D, Lerner J, Mahlman JD, McFarlane NA, Mechoso CR, Molod A, O’Neill A, Pierce RB, Randel WJ, Rood RB, Wu F (2000) The GCM-reality intercomparison project for SPARC (GRIPS): scientific issues and initial results. Bull Am Met Soc 81:781–796

    Article  Google Scholar 

  • Perlwitz J, Graf H (1995) The statistical connection between tropospheric and stratospheric circulation of the northern hemisphere in winter. J Clim 8:2281–2295

    Article  Google Scholar 

  • Pinto JG, Ulbrich U, Leckebusch GC, Spangehl T, Reyers M, Zacharias S (2007) Changes in the storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. Clim Dyn 29:2–3. doi:10.1007/s00382-007-0230-4

    Article  Google Scholar 

  • Ringer MA et al (2006) The physical properties of the atmosphere in the New Hadley centre global atmospheric model (HadGEM1): Part II: global variability and regional climate. J Clim 19:1302–1326

    Article  Google Scholar 

  • Scaife AA, Butchart N, Warner CD, Swinbank R (2002) Impact of a spectral gravity wave parametrization on the stratosphere in the met office unified model. J Atmos Sci 59:1473–1489

    Article  Google Scholar 

  • Scaife AA, Knight JR, Vallis G, Folland CK (2005) A stratospheric influence on the winter NAO and north Atlantic surface climate. Geophys Res Lett 32:L18715

    Article  Google Scholar 

  • Shaw TA, Shepherd TG (2008) Raising the roof. Nat Geosci 1:12–13

    Article  Google Scholar 

  • Shindell DT, Miller RL, Schmidt GA, Pandolfo L (1999) Simulation of recent northern winter climate trends by greenhouse-gas forcing. Nature 399:452–455. doi:10.1038/20905

    Article  Google Scholar 

  • Sigmond M, Scinocca JF, Kushner PJ (2008) Impact of the stratosphere on tropospheric climate change. Geophys Res Lett 35:L12706. doi:10.1029/2008GL033573

    Article  Google Scholar 

  • Solomon S et al (2007) Climate change: the physical science basis. Cambridge University Press, Cambridge, p 996

    Google Scholar 

  • Son S-W, Polvani LM, Waugh DW, Akiyoshi H, Garcia R, Kinnison D, Pawson S, Rozanov E, Shepherd TG, Shibata K (2008) The impact of stratospheric ozone recovery on the southern hemisphere westerly jet. Science 320:1486–1489

    Article  Google Scholar 

  • Wang XL, Swail VR, Zwiers F, Zhang X, Fang Y (2008) Detection of external influence on trends in atmospheric storminess and northern ocean wave heights. Clim Dyn 32:189–203

    Article  Google Scholar 

  • Wittman MAH, Polvani LM, Scott RK, Charlton AJ (2004) Stratospheric influence on baroclinic lifecycles and its connection to the Arctic oscillation. Geophys Res Lett 31:L16113. doi:10.1029/2004GL020503

    Article  Google Scholar 

  • Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of twenty-first century climate. Geophys Res Lett 32:L18701. doi:10.1029/2005GL023684

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge discussions with Jeff Knight, Chris Folland, Doug Smith and Sarah Ineson at the Met Office Hadley Centre while carrying out this work. AAS, DF, NB and SH were supported by the Joint DECC, Defra and MoD Integrated Climate Programme—DECC/Defra (GA01101), MoD (CBC/2B/0417_Annex C5). We also acknowledge funding from the EU-project ENSEMBLES (Contr. No. 505539) and the DFG SPP CAWSES/PROSECCO project. Simulations with model 2 were carried out at the DKRZ in Hamburg, Germany. CCSRNIES computations were completed with the super computer at CGER, NIES and supported by the Global Environmental Research Fund of the Ministry of the Environment of Japan (A-071). We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset. Support of this dataset is provided by the Office of Science, U.S. Department of Energy. We acknowledge the Chemistry-Climate Model Validation Activity (CCMVal) for WCRP’s (World Climate Research Programme) SPARC (Stratospheric Processes and their Role in Climate) project for organizing and coordinating the model data analysis activity, and the British Atmospheric Data Centre (BADC) for collecting and archiving the CCMVal model output.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam A. Scaife.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scaife, A.A., Spangehl, T., Fereday, D.R. et al. Climate change projections and stratosphere–troposphere interaction. Clim Dyn 38, 2089–2097 (2012). https://doi.org/10.1007/s00382-011-1080-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1080-7

Keywords

Navigation