Child's Nervous System

, Volume 30, Issue 1, pp 105–116

Computational fluid dynamics of ventricular catheters used for the treatment of hydrocephalus: a 3D analysis

  • Marcelo Galarza
  • Ángel Giménez
  • José Valero
  • Olga Porcar Pellicer
  • José María Amigó
Original Paper

DOI: 10.1007/s00381-013-2226-1

Cite this article as:
Galarza, M., Giménez, Á., Valero, J. et al. Childs Nerv Syst (2014) 30: 105. doi:10.1007/s00381-013-2226-1

Abstract

Introduction

The most common treatment for hydrocephalus remains the ventriculoperitoneal shunt. Yet, the most frequent complication is ventricular catheter obstruction, which may account for 50–80 % of newly inserted shunts. Although many factors contribute to this, the main one is related to flow characteristics of the catheter within the hydrocephalic brain. A landmark study by Lin et al. addressed the problem of fluid characteristics in ventricular catheters using a two-dimensional simulation program of computational fluid dynamics (CFD).

Methods

The authors have studied five current commercially available ventricular catheter designs using CFD in three-dimensional automated designs. The general procedure for the development of a CFD model involves incorporating the physical dimensions of the system to be studied into a virtual wire-frame model. The shape and features of the actual physical model are transformed into coordinates for the virtual space of the computer and a CFD computational grid (mesh) is generated. The fluid properties and motion are calculated at each of these grid points. After grid generation, flow field boundary conditions are applied, and the fluid’s thermodynamic and transport properties are included. At the end, a system of strongly coupled, nonlinear, partial differential conservation equations governing the motion of the flow field are numerically solved. This numerical solution describes the fluid motion and properties.

Results

The authors calculated that most of the total fluid mass flows into the catheter’s most proximal holes. Fifty to 75 % flows into the two most proximal sets of inlets of current commercially available 12–32-hole catheters. Some flow uniformity was disclosed in Rivulet-type catheter.

Conclusions

Most commercially available ventricular catheters have an abnormally increase flow distribution pattern. New catheter designs with variable hole diameters along the catheter tip will allow the fluid to enter the catheter more uniformly along its length, thereby reducing the probability of its becoming occluded.

Keywords

Hydrocephalus Computational fluid dynamics (CFD) Ventricular catheter Shunt Cerebrospinal fluid (CSF) Flow 

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marcelo Galarza
    • 1
    • 4
  • Ángel Giménez
    • 2
  • José Valero
    • 2
  • Olga Porcar Pellicer
    • 3
  • José María Amigó
    • 2
  1. 1.Regional Department of Neurosurgery“Virgen de la Arrixaca” University HospitalMurciaSpain
  2. 2.Operations Research CenterUniversity Miguel HernándezElcheSpain
  3. 3.Department of Health PsychologyUniversity Miguel HernándezElcheSpain
  4. 4.Regional Service of NeurosurgeryHospital Universitario Virgen de la ArrixacaEl PalmarSpain