Skip to main content
Log in

Intramedullary spinal cord tumor surgery: can we do it without intraoperative neurophysiological monitoring?

  • Focus Session
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Objective

The objective of this review is to discuss the utilization of intraoperative neurophysiological monitoring (IONM) during spinal cord tumor surgery.

Discussion

The literature generally supports the use of intraoperative monitoring during surgery for spinal cord lesions.

Conclusion

We argue that IONM should be the standard of care for the treatment of such pathology, and a number of issues supporting this argument are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Brown RH, Nash CL Jr (1979) Current status of spinal cord monitoring. Spine 4:466–470

    Article  CAS  PubMed  Google Scholar 

  2. Moser FG, Tuvia J, Lasalla P, Llana J (1992) Ependymoma of the spinal nerve root: case report. Neurosurgery 31:962–964

    Article  CAS  PubMed  Google Scholar 

  3. Zornow MH, Grafe MR, Tybor C, Swenson MR (1990) Preservation of evoked potentials in a case of anterior spinal artery syndrome. EEG Clin Neurophysiol 77:137–139

    CAS  Google Scholar 

  4. Morota N, Deletis V, Constantini S, Kofler M, Cohen H, Epstein FJ (1997) The role of motor evoked potentials during surgery for intramedullary spinal cord tumors. Neurosurgery 41:1327–1336

    Article  CAS  PubMed  Google Scholar 

  5. Kothbauer K, Deletis V, Epstein FJ (1997) Intraoperative spinal cord monitoring for intramedullary surgery: an essential adjunct. Ped Neurosurg 26:247–254

    Article  CAS  Google Scholar 

  6. Schwartz DM, Auerbach JD, Dormans JP, Flynn J, Drummond DS, Bowe JA, Laufer S, Shah SA, Bowen JR, Pizzutillo PD, Jones KJ, Drummond DS (2007) Neurophysiological detection of impending spinal cord injury during scoliosis surgery. J Bone Joint Surg Am 89:2440–2449

    Article  PubMed  Google Scholar 

  7. Nuwer MR, Dawson EG, Carlson LG, Kanim LE, Sherman JE (1995) Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol 96:6–11

    Article  CAS  PubMed  Google Scholar 

  8. Sala F, Dvorak J, Faccioli F (2007) Cost effectiveness of multimodal intraoperative monitoring during spine surgery. Eur Spine J 16:S229–S231

    Article  PubMed  Google Scholar 

  9. National Spinal Cord Injury Statistical Center N (2008) Spinal cord injury: facts and figures at a glance. http://www.spinalcord.uab.edu

  10. Kalkman CJ, Drummond JC et al (1991) Low concentrations of isoflurane abolish motor evoked responses to transcranial electrical stimulation during nitrous oxide/opioid anesthesia in humans. Anesth Analg 73(4):410–415

    Article  CAS  PubMed  Google Scholar 

  11. Zentner J, Albrecht T et al (1992) Influence of halothane, enflurane, and isoflurane on motor evoked potentials. Neurosurgery 31(2):298–305

    Article  CAS  PubMed  Google Scholar 

  12. Sakamoto T, Kawaguchi M et al (2001) Suppressive effect of nitrous oxide on motor evoked potentials can be reversed by train stimulation in rabbits under ketamine/fetanyl anaesthesia, but not with additional propofol. Br J Anaesth 86(3):395–402

    Article  CAS  PubMed  Google Scholar 

  13. Nathan N, Tabaraud F et al (2003) Influence of propofol concentrations on multipulse transcranial motor evoked potentials. Br J Anaesth 91(4):493–497

    Article  CAS  PubMed  Google Scholar 

  14. Kawaguchi M, Sakamoto T et al (2000) Low dose propofol as a supplement to ketamine-based anesthesia during intraoperative monitoring of motor-evoked potentials. Spine 25(8):974–979

    Article  CAS  PubMed  Google Scholar 

  15. Yakovlev PL, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Davis, Philadelphia, pp 3–70

    Google Scholar 

  16. Epstein F, Epstein N (1981) Surgical management of holocord intramedullary spinal cord astrocytomas in children. J Neurosurg 54:829–832

    Article  CAS  PubMed  Google Scholar 

  17. Epstein F, Epstein N (1982) Surgical treatment of spinal cord astroyctomas. J Neurosurg 57:685–689

    Article  CAS  PubMed  Google Scholar 

  18. Steinbok P, Cochrane DD, Poskitt K (1992) Intramedullary spinal cord tumors in children. Neurosurg Clin North Am 3:931–945

    CAS  Google Scholar 

  19. Kothbauer KF, Deletis V, Epstein FJ (1998) Motor-evoked potential monitoring for intramedullary spinal cord tumor surgery: correlation of clinical and neurophysiological data in a series of 100 consecutive procedures. Neurosurg Focus 4. http://www.aans.org/journals/online_j/may98/4-5-1

  20. McGirt MJ, Goldstein IM, Chaichana KL, Tobias ME, Kothbauer KF, Jallo GI (2008) Extent of surgical resection of malignant astrocytomas of the spinal cord: outcome analysis of 35 patients. Neurosurgery 63:55–61

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wesley Hsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, W., Bettegowda, C. & Jallo, G.I. Intramedullary spinal cord tumor surgery: can we do it without intraoperative neurophysiological monitoring?. Childs Nerv Syst 26, 241–245 (2010). https://doi.org/10.1007/s00381-009-1022-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-009-1022-4

Keywords

Navigation