Skip to main content
Log in

Transradial catheterization may decrease the radial artery luminal diameter and impair the vasodilatation response in the access site at late term: an observational study

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

The present study aimed to evaluate the late-term changes in radial artery luminal diameter (RAD) and vasodilatation response following transradial catheterization (TRC). TRC-inducing trauma to radial artery intima may trigger chronic phase vascular changes and lead to anatomical and functional impairment. There is controversial data whether the impairment persists or repairs later. Fifty-six consecutive patients undergoing TRC were enrolled prospectively. Baseline RAD, flow-mediated dilatation (FMD) and nitroglycerin-mediated dilatation (NMD) of the radial artery at the access site were measured before TRC by high-resolution ultrasound. Six months later; RAD, FMD and NMD were measured again at the same access site. RAD at the sixth month was reduced compared with pre-procedural measurements (2.85 ± 0.44 versus 2.74 ± 0.42 mm, p = 0.0001).The average FMD decreased to 5.66 ± 5.87 %, which was significantly lower than the observed pre-procedural FMD (9.45 ± 5.01 %) 6 months after TRC (p = 0.0001). Likewise, the average NMD at the sixth month was reduced compared with pre-procedural NMD (9.52 ± 6.77 versus 6.64 ± 6.51 %, p = 0.018). Logistic regression analysis indicated that pre-procedural radial artery diameter to sheath size ratio was the independent predictor of NMD reduction (95 % confidence interval, β = −9.74, p = 0.024). TRC may lead to a significant luminal diameter reduction and impairment of vasodilatation response in the radial artery at late term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kiemeneij F, Laarman GJ, Odekerken D, Slagboom T, van der Wieken R (1997) A randomized comparison of percutaneous transluminal coronary angioplasty by the radial, brachial and femoral approaches: the access study. J Am Coll Cardiol 29:1269–1275

    Article  CAS  PubMed  Google Scholar 

  2. Louvard Y, Lefèvre T, Allain A, Morice M (2001) Coronary angiography through the radial or the femoral approach: the CARAFE study. Catheter Cardiovasc Interv 52:181–187

    Article  CAS  PubMed  Google Scholar 

  3. Agostoni P, Biondi-Zoccai GG, de Benedictis ML, Rigattieri S, Turri M, Anselmi M, Vassanelli C, Zardini P, Louvard Y, Hamon M (2004) Radial versus femoral approach for percutaneous coronary diagnostic and interventional procedures; systematic overview and meta-analysis of randomized trials. J Am Coll Cardiol 44:349–356

    Article  PubMed  Google Scholar 

  4. Yonetsu T, Kakuta T, Lee T, Takayama K, Kakita K, Iwamoto T, Kawaguchi N, Takahashi K, Yamamoto G, Iesaka Y, Fujiwara H, Isobe M (2010) Assessment of acute injuries and chronic intimal thickening of the radial artery after transradial coronary intervention by optical coherence tomography. Eur Heart J 31:1608–1615

    Article  PubMed  Google Scholar 

  5. Burstein JM, Gidrewicz D, Hutchison SJ, Holmes K, Jolly S, Cantor WJ (2007) Impact of radial artery cannulation for coronary angiography and angioplasty on radial artery function. Am J Cardiol 99:457–459

    Article  PubMed  Google Scholar 

  6. Madssen E, Haere P, Wiseth R (2006) Radial artery diameter and vasodilatory properties after transradial coronary angiography. Ann Thorac Surg 82:1698–1702

    Article  PubMed  Google Scholar 

  7. Widlansky ME, Gokce N, Keaney JF Jr, Vita JA (2003) The clinical implications of endothelial dysfunction. J Am Coll Cardiol 42:1149–1160

    Article  CAS  PubMed  Google Scholar 

  8. Halcox JP, Donald AE, Ellins E, Witte DR, Shipley MJ, Brunner EJ, Marmot MG, Deanfield JE (2009) Endothelial function predicts progression of carotid intima-media thickness. Circulation 119:1005–1012

    Article  PubMed  Google Scholar 

  9. Magda SL, Ciobanu AO, Florescu M, Vinereanu D (2013) Comparative reproducibility of the noninvasive ultrasound methods for the assessment of vascular function. Heart Vessels 28:143–150

    Article  PubMed  Google Scholar 

  10. Enderle MD, Schroeder S, Ossen R, Meisner C, Baumbach A, Haering HU, Karsch KR, Pfohl M (1998) Comparison of peripheral endothelial dysfunction and intimal media thickness in patients with suspected coronary artery disease. Heart 80:349–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Neunteufl T, Katzenschlager R, Hassan A, Klaar U, Schwarzacher S, Glogar D, Bauer P, Weidinger F (1997) Systemic endothelial dysfunction is related to the extent and severity of coronary artery disease. Atherosclerosis 129:111–118

    Article  CAS  PubMed  Google Scholar 

  12. Yan Z, Zhou Y, Zhao Y, Zhou Z, Yang S, Wang Z (2010) Impact of transradial coronary procedures on radial artery. Angiology 61:8–13

    Article  Google Scholar 

  13. Okuyan H, Açikgoz SK, Tacoy G, Kocaman SA, Abaci A (2013) Effect of transradial coronary angiography procedure on vascular diameter and vasodilator functions in the access site. Angiology 64:515–521

    Article  PubMed  Google Scholar 

  14. Kotowycz MA, Dzavik V (2012) Radial artery patency after transradial catheterization. Circ Cardiovasc Interv 5:127–133

    Article  PubMed  Google Scholar 

  15. Corretti M, Anderson T, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, Deanfield J, Drexler H, Gerhard-Herman M, Herrington D, Vallance P, Vita J, Vogel R, International Brachial Artery Reactivity Task Force (2002) Guidelines for the ultrasound assessment of endothelial-dependent flow mediated vasodilation of the brachial artery. J Am Coll Cardiol 39:257–265

    Article  PubMed  Google Scholar 

  16. Gensini GG (1983) A more meaningful scoring system for determining the severity of coronary heart disease. Am J Cardiol 51:606

    Article  CAS  PubMed  Google Scholar 

  17. Abe S, Meguro T, Naganuma T, Kikuchi Y (2001) Change in the diameter of the radial artery transradial intervention using a 6 French system in Japanese patients. J Invasive Cardiol 13:573–575

    CAS  PubMed  Google Scholar 

  18. Staniloae CS, Mody KP, Sanghvi K, Mindrescu C, Coppola JT, Antonescu CR, Shah S, Patel T (2009) Histopathologic changes of the radial artery wall secondary to transradial catheterization. Vasc Health Risk Manag 5:527–532

    PubMed  PubMed Central  Google Scholar 

  19. Wakeyama T, Ogawa H, Iida H, Takaki A, Iwami T, Mochizuki M, Tanaka T (2003) Intima-media thickening of the radial artery after transradial intervention. An intravascular ultrasound study. J Am Coll Cardiol 41:1109–1114

    Article  PubMed  Google Scholar 

  20. Edmundson A, Mann T (2005) Non-occlusive radial artery injury resulting from transradial coronary interventions: radial artery IVUS. J Invasive Cardiol 17:528–531

    PubMed  Google Scholar 

  21. Libby P (2008) The molecular mechanisms of the thrombotic complications of atherosclerosis. J Intern Med 263:517–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mackman N (2008) Triggers, targets and treatments for thrombosis. Nature 451:914–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Heiss C, Balzer J, Hauffe T, Hamada S, Stegemann E, Koeppel T, Merx MW, Rassaf T, Kelm M, Lauer T (2009) Vascular dysfunction of brachial artery after transradial access for coronary catheterization: impact of smoking and catheter changes. JACC Cardiovasc Interv 2:1067–1073

    Article  PubMed  Google Scholar 

  24. Sansone R, Stegemann E, Ozaslan G, Schuler D, Lukosz M, Rodriguez-Mateos A, Lauer T, Westenfeld R, Kelm M, Heiss C (2014) Early and late response-to-injury in patients undergoing transradial coronary angiography: arterial remodeling in smokers. Am J Cardiovasc Dis 4:47–57

    PubMed  PubMed Central  Google Scholar 

  25. Yan Z, Zhou Y, Zhao Y, Zhou Z, Yang S, Wang Z (2014) Impact of transradial coronary procedures on radial artery function. Angiology 65:104–107

    Article  PubMed  Google Scholar 

  26. Sanmartin M, Gomez M, Rumoroso JR, Sadaba M, Martinez M, Baz JA, Iniguez A (2007) Interruption of blood flow during compression and radial artery occlusion after transradial catheterization. Catheter Cardiovasc Interv 70:185–189

    Article  PubMed  Google Scholar 

  27. Nagai S, Abe S, Sato T, Hozawa K, Yuki K, Hanashima K, Tomoike H (1999) Ultrasonic assessment of vascular complications in coronary angiography and angioplasty after transradial approach. Am J Cardiol 83:180–186

    Article  CAS  PubMed  Google Scholar 

  28. Zhou YJ, Zhao YX, Cao Z, Fu XH, Nie B, Liu YY, Guo YH, Cheng WJ, Jia DA (2007) Incidence and risk factors of acute radial artery occlusion following transradial percutaneous coronary intervention. Zhonghua Yi Xue Za Zhi 87:1531–1534

    PubMed  Google Scholar 

  29. Pancholy SB (2009) Impact of two different hemostatic devices on radial artery outcomes after transradial catheterization. J Invasive Cardiol 21:101–104

    PubMed  Google Scholar 

  30. Vapaatalo H, Mervaala E (2001) Clinically important factors influencing endothelial function. Med Sci Monit 7:1075–1085

    CAS  PubMed  Google Scholar 

  31. Anderson TJ (1999) Assessment and treatment of endothelial dysfunction in humans. J Am Coll Cardiol 34:631–638

    Article  CAS  PubMed  Google Scholar 

  32. Dawson EA, Rathore S, Cable NT, Wright DJ, Morris JL, Green DJ (2010) Impact of catheter insertion using the radial approach on vasodilatation in humans. Clin Sci 118:633–640

    Article  PubMed  Google Scholar 

  33. Münzel T, Feil R, Mülsch A, Lohmann SM, Hofmann F, Walter U (2003) Physiology and pathophysiology of vascular signaling controlled by cyclic guanosine 3′,5′-cyclic monophosphate-dependent protein kinase. Circulation 108:2172–2173

    Article  PubMed  Google Scholar 

  34. Eržen B, Šabovič M (2013) In young post myocardial infarction male patients elevated plasminogen activator inhibitor-1 correlates with insulin resistance and endothelial dysfunction. Heart Vessel 28:570–577

    Article  Google Scholar 

  35. Ghosh AK, Vaughan DE (2012) PAI-1 in tissue fibrosis. J Cell Physiol 227:493–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Saito S, Ikei H, Hosokawa G, Tanaka S (1999) Influence of the ratio between radial artery inner diameter and sheath outer diameter on radial artery flow after transradial coronary intervention. Catheter Cardiovasc Interv 46:173–178

    Article  CAS  PubMed  Google Scholar 

  37. Buturak A, Gorgulu S, Norgaz T, Voyvoda N, Sahingoz Y, Degirmencioglu A, Dagdelen S (2014) The long-term incidence and predictors of radial artery occlusion following a transradial coronary procedure. Cardiol J 21(4):350–356

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Buturak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buturak, A., Tekturk, B.M., Degirmencioglu, A. et al. Transradial catheterization may decrease the radial artery luminal diameter and impair the vasodilatation response in the access site at late term: an observational study. Heart Vessels 31, 482–489 (2016). https://doi.org/10.1007/s00380-015-0640-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-015-0640-x

Keywords

Navigation