Skip to main content
Log in

Oxidation-induced loss of the ability of HDL to counteract the inhibitory effect of oxidized LDL on vasorelaxation

  • Short Communication
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Several current diseases are associated with an increase in the oxidation of HDL, which is likely to impair their functionality. Our aim was to identify whether oxidation could change the protective effect of HDL against the deleterious effect on vasoreactivity induced by oxidative stress. HDL from healthy subjects were oxidized in vitro by Cu2+, and the ability of oxidized HDL to counteract the inhibitory effect of oxidized LDL on acetylcholine-induced vasodilation was tested on isolated rabbit aorta rings. Oxidation of HDL was evidenced by the increase in the 7-oxysterols/cholesterol ratio (3.20 ± 1.12 vs 0.02 ± 0.01 % in native HDL, p < 0.05). Oxidized LDL inhibited endothelium-dependent vasodilation (E max = 50.2 ± 5.0 vs 92.5 ± 1.7 % for incubation in Kreb’s buffer, p < 0.05) and native HDL counteracted this inhibition (E max = 72.4 ± 4.8 vs 50.2 ± 5.0 % p < 0.05). At the opposite, oxidized HDL had no effect on oxidized LDL-induced inhibition on endothelium-dependent vasorelaxation (E max = 53.7 ± 4.8 vs 50.2 ± 5.0 %, NS). HDL oxidation is associated with a decreased ability of HDL to remove 7-oxysterols from oxidized LDL. In conclusion, these results show that oxidation of HDL induces the loss of their protective effect against endothelial dysfunction, which could promote atherosclerosis in diseases associated with increased oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Camont L, Chapman MJ, Kontush A (2011) Biological activities of HDL subpopulations and their relevance to cardiovascular disease. Trends Mol Med 17:594–603

    Article  CAS  PubMed  Google Scholar 

  2. Brock JW, Jenkins AJ, Lyons TJ, Klein RL, Yim E, Lopes-Virella M, Carter RE, (DCCT/EDIC) Research Group, Thorpe SR, Baynes JW (2008) Increased methionine sulfoxide content of apoA-I in type 1 diabetes. J Lipid Res 49:847–855

    Article  CAS  PubMed  Google Scholar 

  3. Morgantini C, Natali A, Boldrini B, Imaizumi S, Navab M, Fogelman AM, Ferrannini E, Reddy ST (2011) Anti-inflammatory and antioxidant properties of HDLs are impaired in type 2 diabetes. Diabetes 60:2617–2623

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Nikolopoulou A, Kadoglou NP (2012) Obesity and metabolic syndrome as related to cardiovascular disease. Expert Rev Cardiovasc Ther 10:933–939

    Article  CAS  PubMed  Google Scholar 

  5. Haas MJ, Mooradian AD (2011) Inflammation, high-density lipoprotein and cardiovascular dysfunction. Curr Opin Infect Dis 24:265–272

    Article  CAS  PubMed  Google Scholar 

  6. Edirisinghe I, Rahman I (2010) Cigarette smoke-mediated oxidative stress, shear stress, and endothelial dysfunction: role of VEGFR2. Ann N Y Acad Sci 1203:66–72

    Article  CAS  PubMed  Google Scholar 

  7. Honda H, Ueda M, Kojima S, Mashiba S, Michihata T, Takahashi K, Shishido K, Akizawa T (2012) Oxidized high-density lipoprotein as a risk factor for cardiovascular events in prevalent hemodialysis patients. Atherosclerosis 220:493–501

    Article  CAS  PubMed  Google Scholar 

  8. Bochkov VN, Oskolkova OV, Birukov KG, Levonen AL, Binder CJ, Stöckl J (2010) Generation and biological activities of oxidized phospholipids. Antioxid Redox Signal 12:1009–1059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Nagano Y, Arai H, Kita T (1991) High density lipoprotein loses its effect to stimulate efflux of cholesterol from foam cells after oxidative modification. Proc Natl Acad Sci USA 88:6457–6461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Salmon S, Mazière C, Auclair M, Theron L, Santus R, Mazière JC (1992) Malondialdehyde modification and copper-induced autooxidation of high-density lipoprotein decrease cholesterol efflux from human cultured fibroblasts. Biochim Biophys Acta 1125:230–235

    Article  CAS  PubMed  Google Scholar 

  11. Shao B, Fu X, McDonald TO, Green PS, Uchida K, O’Brien KD, Oram JF, Heinecke JW (2005) Acrolein impairs ATP binding cassette transporter A1-dependent cholesterol export from cells through site-specific modification of apolipoprotein A-I. J Biol Chem 280:36386–36396

    Article  CAS  PubMed  Google Scholar 

  12. Shao B (2012) Site-specific oxidation of apolipoprotein A-I impairs cholesterol export by ABCA1, a key cardioprotective function of HDL. Biochim Biophys Acta 1821:490–501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Assinger A, Koller F, Schmid W, Zellner M, Babeluk R, Koller E, Volf I (2010) Specific binding of hypochlorite-oxidized HDL to platelet CD36 triggers proinflammatory and procoagulant effects. Atherosclerosis 212:153–160

    Article  CAS  PubMed  Google Scholar 

  14. Jaouad L, Milochevitch C, Khalil A (2003) PON1 paraoxonase activity is reduced during HDL oxidation and is an indicator of HDL antioxidant capacity. Free Radic Res 37:77–83

    Article  CAS  PubMed  Google Scholar 

  15. Soumyarani VS, Jayakumari N (2012) Oxidatively modified high density lipoprotein promotes inflammatory response in human monocytes-macrophages by enhanced production of ROS, TNF-α, MMP-9, and MMP-2. Mol Cell Biochem 366:277–285

    Article  CAS  PubMed  Google Scholar 

  16. Napoli C, de Nigris F, Williams-Ignarro S, Pignalosa O, Sica V, Ignarro LJ (2006) Nitric oxide and atherosclerosis: an update. Nitric Oxide 15:265–279

    Article  CAS  PubMed  Google Scholar 

  17. Perségol L, Foissac M, Lagrost L, Athias A, Gambert P, Vergès B, Duvillard L (2007) HDL particles from type 1 diabetic patients are unable to reverse the inhibitory effect of oxidised LDL on endothelium-dependent vasorelaxation. Diabetologia 50:2384–2387

    Article  PubMed  Google Scholar 

  18. Perségol L, Vergès B, Foissac M, Gambert P, Duvillard L (2006) Inability of HDL from type 2 diabetic patients to counteract the inhibitory effect of oxidised LDL on endothelium-dependent vasorelaxation. Diabetologia 49:1380–1386

    Article  PubMed  Google Scholar 

  19. Urata J, Ikeda S, Koga S, Nakata T, Yasunaga T, Sonoda K, Koide Y, Ashizawa N, Kohno S, Maemura K (2012) Negatively charged low-density lipoprotein is associated with atherogenic risk in hypertensive patients. Heart Vessels 27:235–242

    Article  PubMed  Google Scholar 

  20. Deckert V, Brunet A, Lantoine F, Lizard G, Millanvoye-van Brussel E, Monier S, Lagrost L, David-Dufilho M, Gambert P, Devynck MA (1998) Inhibition by cholesterol oxides of NO release from human vascular endothelial cells. Arterioscler Thromb Vasc Biol 18:1054–1060

    Article  CAS  PubMed  Google Scholar 

  21. Brindisi MC, Duvillard L, Monier S, Vergès B, Perségol (2013) Deleterious effect of glycation on the ability of HDL to counteract the inhibitory effect of oxidized LDL on endothelium-dependent vasorelaxation. Diabetes Metab Res Rev 29:618–623

    Article  CAS  PubMed  Google Scholar 

  22. Seraglia R, Sartore G, Marin R, Burlina S, Manzato E, Ragazzi E, Traldi P, Lapolla A (2013) An effective and rapid determination by MALDI/TOF/TOF of methionine sulphoxide content of ApoA-I in type 2 diabetic patients. J Mass Spectrom 48:105–110

    Article  CAS  PubMed  Google Scholar 

  23. Ferretti G, Bacchetti T, Busni D, Rabini RA, Curatola G (2004) Protective effect of paraoxonase activity in high-density lipoproteins against erythrocyte membranes peroxidation: a comparison between healthy subjects and type 1 diabetic patients. J Clin Endocrinol Metab 89:2957–2962

    Article  CAS  PubMed  Google Scholar 

  24. McMahon M, Hahn BH (2007) Atherosclerosis and systemic lupus erythematosus: mechanistic basis of the association. Curr Opin Immunol 19:633–639

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Christison JK, Rye KA, Stocker R (1995) Exchange of oxidized cholesteryl linoleate between LDL and HDL mediated by cholesteryl ester transfer protein. J Lipid Res 36:2017–2026

    CAS  PubMed  Google Scholar 

  26. Uittenbogaard A, Shaul PW, Yuhanna IS, Blair A, Smart EJ (2000) High density lipoprotein prevents oxidized low density lipoprotein-induced inhibition of endothelial nitric-oxide synthase localization and activation in caveolae. J Biol Chem 275:11278–11283

    Article  CAS  PubMed  Google Scholar 

  27. Drew BG, Fidge NH, Gallon-Beaumier G, Kemp BE, Kingwell BA (2004) High-density lipoprotein and apolipoprotein AI increase endothelial NO synthase activity by protein association and multisite phosphorylation. Proc Natl Acad Sci USA 101:6999–7004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Mineo C, Yuhanna IS, Quon MJ, Shaul PW (2003) High density lipoprotein-induced endothelial nitric-oxide synthase activation is mediated by Akt and MAP kinases. J Biol Chem 278:9142–9149

    Article  CAS  PubMed  Google Scholar 

  29. Hong SH, Jang HH, Lee SR, Lee KH, Woo JS, Kim JB, Kim WS, Min BI, Cho KH, Kim KS, Cheng X, Kim W (2014) Impact of lysophosphatidylcholine on survival and function of UEA-1(+)acLDL (+) endothelial progenitor cells in patients with coronary artery disease. Heart Vessels. doi:10.1007/s00380-014-0473-z

    Google Scholar 

  30. Terasaka N, Westerterp M, Koetsveld J, Fernández-Hernando C, Yvan-Charvet L, Wang N, Sessa WC, Tall AR (2010) ATP-binding cassette transporter G1 and high-density lipoprotein promote endothelial NO synthesis through a decrease in the interaction of caveolin-1 and endothelial NO synthase. Arterioscler Thromb Vasc Biol 30:2219–2225

    Article  CAS  PubMed  Google Scholar 

  31. Mazière JC, Myara I, Salmon S, Auclair M, Haigle J, Santus R, Mazière C (1993) Copper- and malondialdehyde-induced modification of high density lipoprotein and parallel loss of lecithin cholesterol acyltransferase activation. Atherosclerosis 104:213–219

    Article  PubMed  Google Scholar 

  32. Binder V, Ljubojevic S, Haybaeck J, Holzer M, El-Gamal D, Schicho R, Pieske B, Heinemann A, Marsche G (2013) The myeloperoxidase product hypochlorous acid generates irreversible high-density lipoprotein receptor inhibitors. Arterioscler Thromb Vasc Biol 33:1020–1027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Institut National de la Santé et de la Recherche Médicale and the Université de Bourgogne. None of them was implied in study design or data analysis or the decision to submit the article for publication.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Duvillard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perségol, L., Brindisi, MC., Rageot, D. et al. Oxidation-induced loss of the ability of HDL to counteract the inhibitory effect of oxidized LDL on vasorelaxation. Heart Vessels 30, 845–849 (2015). https://doi.org/10.1007/s00380-014-0543-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-014-0543-2

Keywords

Navigation