Skip to main content
Log in

Velocity profile and wall shear stress of saccular aneurysms at the anterior communicating artery

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

It has recently been shown that the aspect ratio (dome/neck) of an aneurysm correlates well with intraaneurysmal blood flow. Aneurysms with an aspect ratio larger than 1.6 carry a higher risk of rupture. We examined the effect of aspect ratio (AR) on intra-aneurysmal flow using experimental models. Flow visualization with particle imaging velocimetry and measurement of wall shear stress using laser Doppler anemometry were performed on three different aneurysm models: AR 0.5, 1.0, and 2.0. Intraaneurysmal flow consists of inflow, circulation, and outflow. Rapid inflow impinged on the distal neck creating a stagnant point. Rapid flow and maximum wall shear stress were observed in the vicinity of the stagnant point. By changing the Reynold’s number, the stagnant point moved. By increasing the AR of the aneurysm, vortices inside the aneurysm sac closed and very slow flow was observed, resulting in very low shear stress markedly at a Reynold’s number of 250, compatible with the diastolic phase. In the aneurysm model AR 2.0, both rapid flow at the neck and vortices inside the aneurysm are sufficient to activate platelets, making a thrombus that may anchor on the dome where very slow flow takes place. Hemodynamics in aneurysms larger than AR 2.0 definitely contribute to thrombus formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van Gijin J, Rinkel GJ (2001) Subarachnoid hemorrhage: diagnosis, causes and management. Brain 124:249–278

    Article  Google Scholar 

  2. Weir B (2002) Unruptured intracranial aneurysms: a review. J Neurosurg 96:3–42

    PubMed  Google Scholar 

  3. Forbus WD (1930) On the origin of milliary aneurysms of the superficial cerebral arteries. Bull Johns Hopkins Hosp 47:239–284

    Google Scholar 

  4. Crawford T (1959) Some observation of the pathogenesis and natural history of intracranial aneurysms. J Neurol Neurosurg Psychiatry 22:259–266

    Article  PubMed  CAS  Google Scholar 

  5. Stehbens WE (1963) Aneurysms and anatomical variation of cerebral arteries. Arch Pathol 75:45–64

    PubMed  CAS  Google Scholar 

  6. Carmichael R (1950) The pathogenesis of non-inflammatory cerebral aneurysms. J Pathol Bacteriol 62:1–19

    Article  PubMed  CAS  Google Scholar 

  7. Hashimoto N, Handa H, Hazama F (1978) Experimentally induced cerebral aneurysms in rats: part I. Surg Neurol 10:3–8

    PubMed  CAS  Google Scholar 

  8. Hashimoto N, Handa H, Hazama F (1979) Experimentally induced cerebral aneurysms in rats: part II. Surg Neurol 11:243–246

    PubMed  CAS  Google Scholar 

  9. Hashimoto N, Handa H, Nagata I, Hazama F (1980) Experimentally induced cerebral aneurysms in rats: part V. Relation of hemodynamics in the circle of Willis to formation of aneurysms. Surg Neurol 13:41–45

    PubMed  CAS  Google Scholar 

  10. Chyatte D, Lewis I (1997) Gelatinase activity and the occurrence of cerebral aneurysms. Stroke 28:799–804

    PubMed  CAS  Google Scholar 

  11. Chyatte D, Bruno G, Desai S, Todor R (1999) Inflammation and intracranial anerusms. Neurosurgery 45:1137–1147

    Article  PubMed  CAS  Google Scholar 

  12. Bruno G, Todor R, Lewis I, Chyatte D (1998) Vascular extracellular matrix remodeling in cerebral aneurysms. J Neurosurg 89:431–440

    PubMed  CAS  Google Scholar 

  13. Kataoka K, Taneda M, Asai T, Kinoshita A, Ito M Kuroda R (1999) Structural fragility and inflammatory response of ruptured cerebral aneurysms. A comparative study between ruptured and unruptured cerebral aneurysms. Stroke 30:1396–1401

    PubMed  CAS  Google Scholar 

  14. Frosen J, Piippo A, Paetau A, Kangasniemi M, Nemela M, Hernesniemi J, Jaaskelainen J (2004) Remodeling of saccular cerebral artery aneurysm wall is associated with rupture. Histological analysis of 24 unruptured and 42 ruptured cases. Stroke 35: 2287–2293

    Article  PubMed  Google Scholar 

  15. Roach MR, Scott S, Ferguson GG (1972) The hemodynamic importance of the geometry of bifurcations in the circle of Willis (glass model studies). Stroke 3:255–267

    PubMed  CAS  Google Scholar 

  16. Steiger HJ, Reulen HJ (1987) Basic flow structure in saccular aneurysm: a flow visualization study. Heart Vessels 3:55–65

    Article  PubMed  CAS  Google Scholar 

  17. Steiger HJ, Liepsch DW, Poll A, Reulen HJ (1988) Hemodynamic stress in terminal saccular aneurysms: a laser-Doppler study. Heart Vessels 4:162–169

    Article  PubMed  CAS  Google Scholar 

  18. Glynn LE (1940) Medial defects in the circle of Willis and their relation to aneurysm formation. J Pathol Bacteriol 51:213–222

    Article  Google Scholar 

  19. Cajander S, Hassler O (1976) Enzymatic destruction of the elastic lamella at the mouth of cerebral berry aneurysm. Acta Neurol Scand 53:171–181

    PubMed  CAS  Google Scholar 

  20. Kim SC, Singh M, Huang J, Prestigiacomo CJ, Winfree CJ, Solomon RA, Connolly Jr ES (1997) Matrix metalloproteinase-9 in cerebral aneurysms. Neurosurgery 41:642–647

    Article  PubMed  CAS  Google Scholar 

  21. Futami K, Yamashita J, Tachibana O, Higashi S, Ikeda K, Yamashima T (1995) Immunohistochemical alterations of fibronectin during the formation and proliferative repair of experimental cerebral aneurysms in rats. Stroke 26:1654–1659

    Google Scholar 

  22. Sasaki K, Ujiie H, Higa T, Hori T, Shinya N, Uchida T (2004) Rabbit aneurysm model mediated by the application of elastase. Neurol Med Chir (Tokyo) 44:467–474

    Article  Google Scholar 

  23. Kamiya A, Togawa T (1980) Adaptative regulation of wall shear stress to flow change in the canine carotid artery. Am J Physiol 239: H14–H21

    PubMed  CAS  Google Scholar 

  24. Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathology and pharmacology. Pharmacol Rev 43:109–142

    PubMed  CAS  Google Scholar 

  25. Masuda H, Zhuang YJ, Singh TM, Kawamura K, Murakami M, Zarins CK, Gragov S (1999) Adaptive remodelling of internal elastic lamina and endothelial lining during flow-induced arterial enlargement. Arterioscler Thromb Vasc Biol 19:2298–2307

    PubMed  CAS  Google Scholar 

  26. Kroll MH, Hellums JD, McIntire LV, Schafer AI, Moake JL (1996) Platelets and shear stress. Blood 88:1525–1541

    PubMed  CAS  Google Scholar 

  27. Zhang J, Bergeron AL, Yu Q, Sun C, McBride L, Bray PF, Dong J (2003) Duration of exposure to high fluid shear stress is critical in shear-induced platelet activation-aggregation. Thromb Haemost 90:672–678

    PubMed  CAS  Google Scholar 

  28. Ruggeri ZM (1997) Mechanisms initiating platelet thrombus formation. Thromb Haemost 78:611–616

    PubMed  CAS  Google Scholar 

  29. Ujiie H, Tachibana H, Hiramatsu O, Hazel AL, Matsumoto T, Ogasawara Y, Nakajima H, Hori T, Takakura K, Kajiya F (1999) Effects of size and shape (aspect ratio) on the hemodynamics of saccular aneurysms: a possible index for surgical treatment of intracranial aneurysms. Neurosurgery 45:119–130

    Article  PubMed  CAS  Google Scholar 

  30. Ujiie H, Tamano Y, Sasaki K, Hori T (2001) Is the aspect ratio a reliable index for predicting the rupture of a saccular aneurysm? Neurosurgery 48:495–503

    Article  PubMed  CAS  Google Scholar 

  31. Weir B, Amidei C, Kongable G, Findlay JM, Kassel NF, Kelly J, Dai L, Karrison TG (2003) The aspect ratio (dome/neck) of ruptured and unruptured aneurysms. J Neurosurg 99:447–451

    PubMed  Google Scholar 

  32. Yamaguchi R, Torisu A, Haida S, Nakazawa N, Ujiie H, Tanishita K (2005) Wall shear stress accompanied with initial, progressive, and developed aneurysm induced around anterior communicating artery. Trans Jpn Soc Mech Eng 71B:1573–1578

    Google Scholar 

  33. Ujiie H, Liepsch DW, Goetz M, Yamaguchi R, Yonetani H, Takakura K (1996) Hemodynamic study of the anterior communicating artery. Stroke 27:2086–2094

    PubMed  CAS  Google Scholar 

  34. Kayembe KNT, Sasahara M, Hazawa F (1984) Cerebral aneurysms and variations in the circle of Willis. Stroke 15:846–850

    PubMed  CAS  Google Scholar 

  35. Ujiie H, Satoh K, Onda H, Oikawa A, Kagawa M, Takakura K, Kobayashi N (1993) Clinical analysis of incidentally discovered unruptured aneurysms. Stroke 24:1850–1856

    PubMed  CAS  Google Scholar 

  36. Stehbens WE (1975) Flow in glass models of arterial bifurcations and berry aneurysms at low Reynolds numbers. Q J Exp Phisiol 60:181–192

    CAS  Google Scholar 

  37. Roach MR (1978) A model study of why some intracranial aneurysms thrombose but others rupture. Stroke 9:583–587

    PubMed  CAS  Google Scholar 

  38. Ujiie H, Edwards DH, Griffith TM (2002) Endogenous nitric oxide synthesis differentially modulates pressure-flow and pressureconductance relationships in the internal and external carotid artery circulations of the rat. Neurol Med Chir (Tokyo) 42: 527–535

    Article  Google Scholar 

  39. Zhuang YJ, Singh TM, Zarins CK, Masuda H (1998) Sequential increases and decreases in blood flow stimulates progressive intimal thickening. Eur J Endovasc Surg 16:301–310

    Article  CAS  Google Scholar 

  40. Bell DN, Spain S, Goldsmith HL (1990) The effect of red blood cells on the ADP-induced aggregation of human platelets in flow through tubes. Thromb Haemost 63:112–121

    PubMed  CAS  Google Scholar 

  41. Goldsmith HL, Bell DN, Bravoc S, Steinberg A, Mclntosh F (1995) Physical and chemical effects of red cells in the shear-induced aggregation of human platelets. Biophys J 69:1584–1595

    PubMed  CAS  Google Scholar 

  42. Joist JH, Bauman JE, Sutera SP (1998) Platelet adhesion and aggregation in pulsatile shear flow: effects of red blood cells. Thromb Res 92:S47–S52

    Article  PubMed  CAS  Google Scholar 

  43. Medved L, Nieuwenhuizen W (2003) Molecular mechanism of initiation of fibrinolysis by fibrin. Thromb Haemost 89:409–419

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Ujiie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, R., Ujiie, H., Haida, S. et al. Velocity profile and wall shear stress of saccular aneurysms at the anterior communicating artery. Heart Vessels 23, 60–66 (2008). https://doi.org/10.1007/s00380-007-0996-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-007-0996-7

Key words

Navigation