Skip to main content
Log in

Impacts of the Autumn Arctic Sea Ice on the Intraseasonal Reversal of the Winter Siberian High

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

During 1979–2015, the intensity of the Siberian high (SH) in November and December–January (DJ) is frequently shown to have an out-of-phase relationship, which is accompanied by opposite surface air temperature and circulation anomalies. Further analyses indicate that the autumn Arctic sea ice is important for the phase reversal of the SH. There is a significantly positive (negative) correlation between the November (DJ) SH and the September sea ice area (SIA) anomalies. It is suggested that the reduction of autumn SIA induces anomalous upward surface turbulent heat flux (SHF), which can persist into November, especially over the Barents Sea. Consequently, the enhanced eddy energy and wave activity flux are transported to mid and high latitudes. This will then benefit the development of the storm track in northeastern Europe. Conversely, when downward SHF anomalies prevail in DJ, the decreased heat flux and suppressed eddy energy hinder the growth of the storm track during DJ over the Barents Sea and Europe. Through the eddy–mean flow interaction, the strengthened (weakened) storm track activities induce decreased (increased) Ural blockings and accelerated (decelerated) westerlies, which makes the cold air from the Arctic inhibited (transported) over the Siberian area. Therefore, a weaker (stronger) SH in November (DJ) occurs downstream. Moreover, anomalously large snowfall may intensify the SH in DJ rather than in November. The ensemble-mean results from the CMIP5 historical simulations further confirm these connections. The different responses to Arctic sea ice anomalies in early and middle winter set this study apart from earlier ones.

摘 要

1979-2015年冬季11月与12月-次年1月(12-1月)的西伯利亚高压(SH)强度常常呈现反相关系, 同时伴随有显著相反的表面温度和大气环流异常. 进一步的分析表明秋季北极海冰异常对上述SH反转现象存在影响. 秋季9月份北极海冰面积与11月(12-1月)西伯利亚高压强度存在显著的正(负)相关关系. 秋季海冰的减少导致巴伦支海区域向上的表面湍流热通量(SHF)增加, 这种向上的异常可持续到11月份, 由此导致局地扰动动能增加以及向临近中-高纬地区的波能量输送, 这有利于欧洲东部, 北部地区风暴轴的发展加强; 然而, 在接下来的12-1月份, 巴伦支海的SHF呈现向下的异常, 减少的热通量导致湍流扰动动能受到抑制, 阻碍了风暴轴的发生发展. 通过瞬变扰动-平均流的相互作用过程, 加强(减弱)的风暴轴活动造成乌拉尔山阻塞频率减少(增加), 纬向西风加速(减速), 不利于(有利于)北极的冷空气到达西伯利亚地区, 进而造成了SH在11月(12-1月)的减弱(增强). 此外, 12-1月份异常偏多的降雪可能进一步加强了该月份的SH, 相比之下11月份降雪的增加并不明显. 基于CMIP5历史模拟的集合平均结果进一步证明了上述关系. 不同于以往研究, 本文指出北极海冰对冬季早期和中期气候的影响存在差异.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, D. G., J. R. Holton., and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

    Google Scholar 

  • Castanheira, J. M., and H. F. Graf, 2003: North Pacific–North Atlantic relationships under stratospheric control? J. Geophys. Res., 108, 4036, https://doi.org/10.1029/2002JD002754.

    Article  Google Scholar 

  • Cattiaux, J., R. Vautard, C. Cassou, P. Yiou, V. Masson-Delmotte, and F. Codron, 2010: Winter 2010 in Europe: A cold extreme in a warming climate. Geophys. Res. Lett., 37, L20704, https://doi.org/10.1029/2010gl044613.

    Google Scholar 

  • Chang, C. P., and M. M. Lu, 2012: Intraseasonal predictability of siberian high and east asian winter monsoon and its interdecadal variability. J. Climate, 25, 1773–1778, https://doi.org/10.1175/jcli-d-11-00500.1.

    Article  Google Scholar 

  • Chen, S. F., R. G. Wu, and W. Chen, 2017: A strengthened impact of November Arctic oscillation on subsequent tropical Pacific sea surface temperature variation since the late-1970s. Climate Dyn., 51, 511–529, https://doi.org/10.1007/s00382-017-3937-x.

    Article  Google Scholar 

  • Cohen, J., and D. Entekhabi, 1999: Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophys. Res. Lett., 26, 345–348, https://doi.org/10.1029/1998 gl900321.

    Article  Google Scholar 

  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7, 627–637, https://doi.org/10.1038/ngeo2234.

    Article  Google Scholar 

  • Cohen, J., J. Jones, J. C. Furtado, and E. Tziperman, 2013: Warm Arctic, cold continents: A common pattern related to Arctic sea ice melt, snow advance, and extreme winter weather. Oceanography, 26, 150–160, https://doi.org/10.5670/oceanog.2013.70.

    Article  Google Scholar 

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, https://doi. org/10.1002/qj.828.

    Article  Google Scholar 

  • Deser, C., R. A. Tomas, and S. L. Peng, 2007: The transient atmospheric circulation response to north atlantic SST and sea ice anomalies. J. Climate, 20, 4751–4767, https://doi.org/10.1175/jcli4278.1.

    Article  Google Scholar 

  • Ding, Y. H., 1990: Build-up, air mass transformation and propagation of Siberian high and its relations to cold surge in East Asia. Meteor. Atmos. Phys., 44, 281–292, https://doi.org/10.1007/BF01026822.

    Article  Google Scholar 

  • Ding, Y. H., and T. N. Krishnamurti, 1987: Heat budget of the Siberian high and the winter monsoon. Mon. Wea. Rev., 115, 2428–2449, https://doi.org/10.1175/1520-0493(1987) 115<2428:HBOTSH>2.0.CO;2.

    Article  Google Scholar 

  • Francis, J. A., W. H. Chan, D. J. Leathers, J. R. Miller, and D. E. Veron, 2009: Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophys. Res. Lett., 36, L07503, https://doi.org/10.1029/2009gl037274.

    Google Scholar 

  • Gleckler, P. J., K. E. Taylor, and C. Doutriaux, 2008: Performance metrics for climate models. J. Geophys. Res., 113, D06104, https://doi.org/10.1029/2007jd008972.

    Google Scholar 

  • Gong, D. Y., S. W. Wang, and J. H. Zhu, 2001: East Asian winter monsoon and arctic oscillation. Geophys. Res. Lett., 28, 2073–2076, https://doi.org/10.1029/2000GL012311.

    Article  Google Scholar 

  • Gong, D. Y., J. Yang, S. J. Kim, Y. Q. Gao, D. Guo, T. J. Zhou 2011: Spring Arctic Oscillation-East Asian summer monsoon connection through circulation changes over the western North Pacific. Climate Dyn., 37, 2199–2216, https://doi.org/10.1007/s00382-011-1041-1.

    Article  Google Scholar 

  • Grise, K. M., S. W. Son, and J. R. Gyakum, 2013: Intraseasonal and interannual variability in north american storm tracks and its relationship to equatorial pacific variability. Mon. Wea. Rev., 141, 3610–3625, https://doi.org/10.1175/mwr-d-12-00322.1.

    Article  Google Scholar 

  • Guirguis, K., A. Gershunov, R. Schwartz, and S. Bennett, 2011: Recent warm and cold daily winter temperature extremes in the Northern Hemisphere. Geophys. Res. Lett., 38, L17701, https://doi.org/10.1029/2011gl048762.

    Google Scholar 

  • Hall, N. M. J., B. J. Hoskins, P. J. Valdes, and C. A. Senior, 1994: Storm tracks in a high-resolution GCM with doubled carbon dioxide. Quart. J. Roy. Meteor. Soc., 120, 1209–1230, https://doi.org/10.1002/qj.49712051905.

    Article  Google Scholar 

  • Hartmann, D. L., and F. Lo, 1998: Wave-driven zonal flow vacillation in the Southern Hemisphere. J. Atmos. Sci., 55, 1303–1315, https://doi.org/10.1175/1520-0469(1998)055 <1303:WDZFVI>2.0.CO;2.

    Article  Google Scholar 

  • He, S. P., 2015: Asymmetry in the arctic oscillation teleconnection with January cold extremes in Northeast China. Atmos. Oceanic Sci. Lett., 8, 386–391, https://doi.org/10.3878/AOSL20150053.

    Google Scholar 

  • He, S. P., and H. J. Wang, 2013a: Impact of the November/December Arctic Oscillation on the following January temperature in East Asia. J. Geophys. Res., 118, 12 981–12 998, https://doi.org/10.1002/2013jd020525.

    Google Scholar 

  • He, S. P., and H. J. Wang, 2013b: Oscillating relationship between the East Asian Winter Monsoon and ENSO. J. Climate, 26, 9819–9838, https://doi.org/10.1175/jcli-d-13-00174.1.

    Article  Google Scholar 

  • Held, I. M., 1993: Large-scale dynamics and global warming. Bull. Amer. Meteor. Soc., 74, 228–241, https://doi.org/10.1175/1520-0477(1993)074<0228:LSDAGW>2.0.CO;2.

    Article  Google Scholar 

  • Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, https://doi.org/10.1029/2008gl037079.

    Google Scholar 

  • Hori, M. E., J. Inoue, T. Kikuchi, M. Honda, and Y. Tachibana, 2011: Recurrence of intraseasonal cold air outbreak during the 2009/2010 Winter in Japan and its ties to the atmospheric condition over the Barents-Kara Sea. SOLA, 7, 25–28, https://doi.org/10.2151/sola.2011-007.

    Article  Google Scholar 

  • Hoskins, B. J., 2001: Modelling of the transient eddies and their feedback on the mean flow. Large-Scale Dynamical Processes in the Atmosphere. B. Hoskins and R. Pearce, Eds., Academic Press, 169 pp.

    Google Scholar 

  • Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 1041–1061, https://doi.org/10.1175/1520-0469 (2002)059<1041:NPOTNH>2.0.CO;2.

    Article  Google Scholar 

  • Huang, X. T., Y. N. Diao, and D. H. Luo, 2017: Amplified winter Arctic tropospheric warming and its link to atmospheric circulation changes. Atmos. Oceanic Sci. Lett., 10, 435–445, https://doi.org/10.1080/16742834.2017.1394159.

    Article  Google Scholar 

  • Inoue, J., M. E. Hori, and K. Takaya, 2012: The role of barents sea ice in the wintertime cyclone track and emergence of a warm-arctic cold-Siberian anomaly. J. Climate, 25, 2561–2568, https://doi.org/10.1175/jcli-d-11-00449.1.

    Article  Google Scholar 

  • Joung, C. H., and M. H. Hitchman, 1982: On the role of successive downstream development in east asian polar air outbreaks. Mon. Wea. Rev., 110, 1224–1237, https://doi.org/10.1175/1520-0493(1982)110<1224:otrosd>2.0.co;2.

    Article  Google Scholar 

  • Jung, T., M. A. Kasper, T. Semmler, and S. Serrar, 2014: Arctic influence on subseasonal midlatitude prediction. Geophys. Res. Lett., 41, 3676–3680, https://doi.org/10.1002/2014gl059961.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP> 2.0.CO;2.

    Article  Google Scholar 

  • Kurita, N., 2011: Origin of Arctic water vapor during the icegrowth season. Geophys. Res. Lett., 38, L02709, https://doi. org/10.1029/2010gl046064.

    Google Scholar 

  • Kushnir, Y., W. A. Robinson, I. Bladé, N. M. J. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 2233–2256, https://doi.org/10.1175/1520-0442 (2002)015<2233:AGRTES>2.0.CO;2.

    Article  Google Scholar 

  • Lau, N. C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45, 2718–2743, https://doi.org/10.1175/1520-0469(1988)045<2718:votoms>2.0.co;2.

    Article  Google Scholar 

  • Lau, N. C., and M. J. Nath, 1991: Variability of the baroclinic and barotropic transient eddy forcing associated with monthly changes in the midlatitude storm tracks. J. Atmos. Sci., 48, 2589–2613, https://doi.org/10.1175/1520-0469 (1991)048<2589:VOTBAB>2.0.CO;2.

    Article  Google Scholar 

  • Lehmann, J., and D. Coumou, 2015: The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes. Scientific Reports, 5, 17491, https://doi.org/10.1038/srep17491.

    Article  Google Scholar 

  • Li, F., and H. J. Wang, 2013: Autumn sea ice cover, winter northern hemisphere annular mode, and winter precipitation in Eurasia. J. Climate, 26, 3968–3981, https://doi.org/10.1175/jcli-d-12-00380.1.

    Article  Google Scholar 

  • Li, F., H. J. Wang, and Y. Q. Gao, 2015: Extratropical ocean warming and winter arctic sea ice cover since the 1990s. J. Climate, 28, 5510–5522, https://doi.org/10.1175/jcli-d-14-00629.1.

    Article  Google Scholar 

  • Li, Y. Q., and S. Yang, 2010: A dynamical index for the East Asian winter monsoon. J. Climate, 23, 4255–4262, https://doi.org/10.1175/2010jcli3375.1.

    Article  Google Scholar 

  • Liu, J. P., J. A. Curry, H. J. Wang, M. R. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proceedings of the National Academy of Sciences of the United States of America, 109, 4074–4079, https://doi.org/10.1073/pnas.1114910109.

    Article  Google Scholar 

  • Liu, J. P., M. R. Song, R. M. Horton, and Y. Y. Hu, 2013: Reducing spread in climate model projections of a September ice-free Arctic. Proceedings of the National Academy of Sciences of the United States of America, 110, 12 571–12 576, https://doi.org/10.1073/pnas.1219716110.

    Article  Google Scholar 

  • Magnusdottir, G., C. Deser, and R. Saravanan, 2004: The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part I: Main features and storm track characteristics of the response. J. Climate, 17, 857–876, https://doi.org/1520-0442(2004)017<0857:TEONAS>2.0.CO;2.

    Google Scholar 

  • Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nature Geoscience, 7, 869–873, https://doi.org/10.1038/ngeo2277.

    Article  Google Scholar 

  • Overland, J. E., K. R. Wood, and M. Y. Wang, 2011: Warm Arctic—cold continents: climate impacts of the newly open Arctic Sea. Polar Research, 30, 15787, https://doi.org/10.3402/polar.v30i0.15787.

    Article  Google Scholar 

  • Overland, J. E., M. Wang, 2010: Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A: Dynamic Meteorology and Oceanography, 62, 1–9, https://doi.org/10.1111/j.1600-0870.2009.00421.x.

    Article  Google Scholar 

  • Overland, J., J. A. Francis, R. Hall, E. Hanna, S. J. Kim, and T. Vihma, 2015: The melting arctic and midlatitude weather patterns: are they connected? J. Climate, 28, 7917–7932, https://doi.org/10.1175/jcli-d-14-00822.1.

    Article  Google Scholar 

  • Park, T.-W., Ho, C.-H., and S. Yang, 2011: Relationship between the Arctic Oscillation and cold surges over East Asia. J. Climate, 24, 68–83, https://doi.org/10.1175/2010JCLI3529.1.

    Article  Google Scholar 

  • Perovich, D. K., B. Light, H. Eicken, K. F. Jones, K. Runciman, and S. V. Nghiem, 2007: Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: Attribution and role in the ice-albedo feedback. Geophys. Res. Lett., 34, L19505, https://doi.org/10.1029/2007gl031480.

    Google Scholar 

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002jd002670.

    Article  Google Scholar 

  • Rivière, G., and I. Orlanski, 2007: Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic Oscillation. J. Atmos. Sci., 64, 241–266, https://doi.org/10.1175/jas3850.1.

    Article  Google Scholar 

  • Ruggieri, P., R. Buizza, and G. Visconti, 2016: On the link between Barents-Kara sea ice variability and European blocking. J. Geophys. Res., 121, 5664–5679, https://doi.org/10.1002/2015jd024021.

    Article  Google Scholar 

  • Seierstad, I. A., and J. Bader, 2008: Impact of a projected future Arctic Sea Ice reduction on extratropical storminess and the NAO. Climate Dyn., 33, 937–943, https://doi.org/10.1007/s00382-008-0463-x.

    Article  Google Scholar 

  • Serreze, M. C., and R. G. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global and Planetary Change, 77, 85–96, https://doi.org/10.1016/j.gloplacha. 2011.03.004.

    Article  Google Scholar 

  • Sorokina, S. A., C. Li, J. J. Wettstein, and N. G. Kvamstø, 2016: Observed atmospheric coupling between barents sea ice and the Warm-Arctic Cold-Siberian anomaly pattern. J. Climate, 29, 495–511, https://doi.org/10.1175/jcli-d-15-0046.1.

    Article  Google Scholar 

  • Sperber, K. R., H. Annamalai, I. S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2012: The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 41, 2711–2744, https://doi.org/10.1007/s00382-012-1607-6.

    Google Scholar 

  • Takaya, K., and H. Nakamura, 2001: A formulation of a phaseindependent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608–627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    Article  Google Scholar 

  • Takaya, K., and H. Nakamura, 2005a: Geographical dependence of upper-level blocking formation associated with intraseasonal amplification of the siberian high. J. Atmos. Sci., 62, 4441–4449, https://doi.org/10.1175/JAS3628.1.

    Article  Google Scholar 

  • Takaya, K., and H. Nakamura, 2005b: Mechanisms of intraseasonal amplification of the cold siberian high. J. Atmos. Sci., 62, 4423–4440, https://doi.org/10.1175/JAS3629.1.

    Article  Google Scholar 

  • Tang, Q. H., X. J. Zhang, X. H. Yang, and J. A. Francis, 2013: Cold winter extremes in northern continents linked to Arctic sea ice loss. Environmental Research Letters, 8, 014036, https://doi.org/10.1088/1748-9326/8/1/014036.

    Article  Google Scholar 

  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297–1300, https://doi.org/10.1029/98gl00950.

    Article  Google Scholar 

  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 1000–1016, https://doi.org/10.1175/1520-0442(2000)013<1000:amitec>2.0.co;2.

    Google Scholar 

  • Tyrlis, E., and B. J. Hoskins, 2008: Aspects of a Northern hemisphere atmospheric blocking climatology. J. Atmos. Sci., 65, 1638–1652, https://doi.org/10.1175/2007jas2337.1.

    Article  Google Scholar 

  • Wang, B., 1992: The vertical structure and development of the ENSO anomaly mode during 1979–1989. J. Atmos. Sci., 49, 698–712, https://doi.org/10.1175/1520-0469(1992)049 <0698:TVSADO>2.0.CO;2.

    Article  Google Scholar 

  • Wang, H. J., and S. P. He, 2012a: The increase of snowfall in Northeast China after the mid-1980s. Chinese Science Bulletin, 58, 1350–1354, https://doi.org/10.1007/s11434-012-5508-1.

    Article  Google Scholar 

  • Wang, H. J., and S. P. He, 2012b: Weakening relationship between East Asian winter monsoon and ENSO after mid-1970s. Chinese Science Bulletin, 57, 3535–3540, https://doi.org/10.1007/s11434-012-5285-x.

    Article  Google Scholar 

  • Wang, J., and M. Ikeda, 2000: Arctic oscillation and Arctic seaice oscillation. Geophys. Res. Lett., 27, 1287–1290, https://doi.org/10.1029/1999gl002389.

    Article  Google Scholar 

  • Wegmann, M., and Coauthors, 2015: Arctic moisture source for Eurasian snow cover variations in autumn. Environmental Research Letters, 10, 054015, https://doi.org/10.1088/1748-9326/10/5/054015.

    Article  Google Scholar 

  • Wu, B. Y., and J. Wang, 2002: Winter arctic oscillation, Siberian high and east asian winter monsoon. Geophys. Res. Lett., 29, 1897, https://doi.org/10.1029/2002gl015373.

    Google Scholar 

  • Wu, B. Y., J. Z. Su, and R. H. Zhang, 2011: Effects of autumnwinter Arctic sea ice on winter Siberian High. Chinese Science Bulletin, 56, 3220–3228, https://doi.org/10.1007/s11434-011-4696-4.

    Article  Google Scholar 

  • Wu, B. Y., K. Yang, and J. A. Francis, 2017: A cold event in asia during January–February 2012 and its possible association with Arctic Sea ice loss. J. Climate, 30, 7971–7990, https://doi.org/10.1175/jcli-d-16-0115.1.

    Article  Google Scholar 

  • Wu, Q. G., and X. D. Zhang, 2010: Observed forcing-feedback processes between Northern Hemisphere atmospheric circulation and Arctic sea ice coverage. J. Geophys. Res., 115, D14119, https://doi.org/10.1029/2009jd013574.

    Google Scholar 

  • Zeng, D. W., W. J. Zhu, X. J. Ma, P. S. Gu, M. Y. Liu, and J. Gao, 2015: North Atlantic storm track and its infulence on Siberian High in winter. Transactions of Atmospheric Sciences, 38, 232–240, https://doi.org/10.13878/j.cnki.dqkxxb.20121003001. (in Chinese)

    Google Scholar 

  • Zhao, P., and R. H. Zhang, 2006: Relationship of interannual variation between an eastern Asia-pacific dipole pressure pattern and East Asian monsoon. Chinese Journal of Atmospheric Sciences, 30, 307–316.

    Google Scholar 

  • Zhou, W., 2017: Impact of Arctic amplification on East Asian winter climate. Atmos. Oceanic Sci. Lett., 10, 385–388, https://doi.org/10.1080/16742834.2017.1350093.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key R&D Program of China (Grant No. 2016YFA0600703), the National Natural Science Foundation of China (Grant Nos. 41505073 and 41605059), the Research Council of Norway–supported project SNOWGLACE (Grant No. 244166/E10), and the Young Talent Support Program of the China Association for Science and Technology (Grant No. 2016QNRC001). This study is also a contribution to the Bjerknes Centre for Climate Research, Bergen, Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuozhuo Lü.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, Z., He, S., Li, F. et al. Impacts of the Autumn Arctic Sea Ice on the Intraseasonal Reversal of the Winter Siberian High. Adv. Atmos. Sci. 36, 173–188 (2019). https://doi.org/10.1007/s00376-017-8089-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-8089-8

Key words

关键词

Navigation