Skip to main content
Log in

Effects of wind fences on the wind environment around Jang Bogo Antarctic Research Station

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

This study investigated the flow characteristics altered by Jang Bogo Antarctic Research Station using computational fluid dynamics (CFD) modeling. The topography and buildings around Jang Bogo Station were constructed with computer-aided-design data in the CFD model domain. We simulated 16 cases with different inflow directions, and compared the flow characteristics with and without Jang Bogo Station for each inflow direction. The wind data recorded by the site’s automatic weather station (AWS) were used for comparison. Wind rose analysis showed that the wind speed and direction after the construction of Jang Bogo Station were quite different from those before construction. We also investigated how virtual wind fences would modify the flow patterns, changing the distance of the fence from the station as well as the porosity of the fence. For westerly inflows, when the AWS was downwind of Jang Bogo Station, the decrease in wind speed was maximized (−81% for west-northwesterly). The wind speed reduction was also greater as the distance of the fence was closer to Jang Bogo Station. With the same distance, the fence with medium porosity (25%–33%) maximized the wind speed reduction. These results suggest that the location and material of the wind fence should be selected carefully, or AWS data should be interpreted cautiously, for particular prevailing wind directions.

摘要

本研究运用计算流体力学(CFD)模式探讨韩国南极张保皋科考站的建造对周边气流特征的改变.在CFD模式中,我们运用计算机辅助制图(CAD)技术构建张保皋科考站周边的地形和建筑物特征.通过设定16种不同输入气流(盛行风)方向模拟方案,对每一方向的盛行风,对比研究张保皋科考站建造前后的风场特征.张保皋科考站的自动气象站风场数据用于模拟结果的对比分析.风玫瑰图分析揭示了张保皋科考站建造前后的风向和风速均有显著差异.通过改变虚拟的防风栅栏与张保皋科考站之间的距离以及防风栅栏的孔隙度,进一步研究防风栅栏对气流特征的影响.在盛行西风条件下,自动气象站处于张保皋科考站下风区,科考站的建造使得下风区风速达到最大程度的减小(西到西北风降低约81%).防风栅栏与张保皋科考站距离越近,风速的减小越明显.当防风栅栏与张保皋科考站距离固定,中等孔隙度(25%-33%)的防风栅栏对风速减小的作用最显著.该研究表明科考站周边防风栅栏的位置和材料结构需要慎重选择,自动气象站风场数据的分析需谨慎,尤其需要结合盛行风的方向.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baik, J.-J., J.-J. Kim, and H. J. S. Fernando, 2003: A CFD model for simulating urban flow and dispersion. J. Appl. Meteor., 42, 1636–1648, doi: 10.1175/1520-0450(2003)042<1636:ACMFSU>2.0.CO;2.

    Article  Google Scholar 

  • Baik, J.-J., S.-B. Park, and J.-J. Kim, 2009: Urban flow and dispersion simulation using a CFD model coupled to a mesoscale model. Journal of Applied Meteorology and Climatology, 48, 1667–1681, doi: 10.1175/2009JAMC2066.1.

    Article  Google Scholar 

  • Bromwich, D. H., 1989: An extraordinary katabatic wind regime at terra nova bay, Antarctica. Mon. Wea. Rev., 117, 688–695, doi: 10.1175/1520-0493(1989)117<0688:AEKWRA>2.0.CO;2.

    Article  Google Scholar 

  • Castro, I. P., and D. D. Apsley, 1997: Flow and dispersion over topography: A comparison between numerical and laboratory data for two-dimensional flows. Atmos. Environ., 31, 839–850, doi: 10.1016/S1352-2310(96)00248-8.

    Article  Google Scholar 

  • Cheng, J.-J., J.-Q. Lei, S.-Y. Li, and H.-F. Wang, 2016: Disturbance of the inclined inserting-type sand fence to wind-sand flow fields and its sand control characteristics. Aeolian Research, 21, 139–150, doi: 10.1016/j.aeolia.2016.04.008.

    Article  Google Scholar 

  • Dong, Z. B., W. Y. Luo, G. Q. Qian, and H. T. Wang, 2007: A wind tunnel simulation of the mean velocity fields behind upright porous fences. Agricultural and Forest Meteorology, 146, 82–93, doi: 10.1016/j.agrformet.2007.05.009.

    Article  Google Scholar 

  • Eichhorn, J., 2004: MISKAM-Handbuch zu Version 4 (with update for Version 6). Available online at http://www.lohmeyer.de/de/system/files/content/download/software/miskam6manualenglish.pdf.

    Google Scholar 

  • Gousseau, P., B. Blocken, T. Stathopoulos, and G. J. F. van Heijst, 2011: CFD simulation of near-field pollutant dispersion on a high-resolution grid: A case study by LES and RANS for a building group in downtown Montreal. Atmos. Environ., 45, 428–438, doi: 10.1016/j.atmosenv.2010.09.065.

    Article  Google Scholar 

  • Gowardhan, A. A., E. R. Pardyjak, I. Senocak, and M. J. Brown, 2011: A CFD-based wind solver for an urban fast response transport and dispersion model. Environmental Fluid Mechanics, 11, 439–464, doi: 10.1007/s10652-011-9211-6.

    Article  Google Scholar 

  • Hertwig, D., G. C. Efthimiou, J. G. Bartzis, and B. Leitl, 2012: CFD-RANS model validation of turbulent flow in a semiidealized urban canopy. Journal of Wind Engineering and Industrial Aerodynamics, 111, 61–72, doi: 10.1016/j.jweia.2012.09.003.

    Article  Google Scholar 

  • Judd, M. J., M. R. Raupach, and J. J. Finnigan, 1996: A wind tunnel study of turbulent flow around single and multiple windbreaks, Part I: Velocity fields. Bound.-Layer Meteor., 80, 127–165, doi: 10.1007/BF00119015.

    Article  Google Scholar 

  • Kim, J.-J., 2007: The effects of obstacle aspect ratio on surrounding flows. Atmosphere, 17, 381–391.

    Google Scholar 

  • Kim, J.-J., and D.-Y. Kim, 2009: Effects of a building’s density on flow in urban areas. Adv. Atmos. Sci., 26, 45–56, doi: 10.1007/s00376-009-0045-9.

    Article  Google Scholar 

  • Kim, J.-J., and J.-J. Baik, 2010: Effects of street-bottom and building-roof heating on flow in three-dimensional street canyons. Adv. Atmos. Sci., 27, 513–527, doi: 10.1007/s00376-009-9095-2.

    Article  Google Scholar 

  • Lee, S.-J., and H.-B. Kim, 1999: Laboratory measurements of velocity and turbulence field behind porous fences. Journal of Wind Engineering and Industrial Aerodynamics, 80, 311–326, doi: 10.1016/S0167-6105(98)00193-7.

    Article  Google Scholar 

  • Ma, Y. M., 1992: Preliminary study on vertical velocity caused by katabatic wind in Antarctica and its influence on atmospheric circulation. Adv. Atmos. Sci., 9, 247–250, doi: 10.1007/BF02657515.

    Article  Google Scholar 

  • Martin, P., 1995: Wind protective fences of PARAWEB compositions. Techtextil-Symposium 1995, Lecture No. 537, 1–8.

    Google Scholar 

  • Mitsuhashi, H., 1982: Measurements of snowdrifts and wind profiles around the huts at Syowa station in Antarctica. Antarctic Record, 75, 37–56.

    Google Scholar 

  • Nylen, T. H., A. G. Fountain, and P. T. Doran, 2004: Climatology of katabatic winds in the McMurdo dry valleys, southern Victoria Land, Antarctica. J. Geophys. Res., 109, doi: 10.1029/2003JD003937.

    Google Scholar 

  • Stathopoulos, T., 2006: Pedestrian level winds and outdoor human comfort. Journal of Wind Engineering and Industrial Aerodynamics, 94, 769–780, doi: 10.1016/j.jweia.2006.06.011.

    Article  Google Scholar 

  • Tominaga, Y., A. Mochida, T. Shirasawa, R. Yoshie, H. Kataoka, K. Harimoto, and T. Nozu, 2004: Cross comparisons of CFD results of wind environment at pedestrian level around a high-rise building and within a building complex. Journal of Asian Architecture and Building Engineering, 3, 63–70, doi: 10.3130/jaabe.3.63.

    Article  Google Scholar 

  • Versteeg, H. K., and W. Malalasekera, 1995: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Longman, Malaysia, 257 pp.

    Google Scholar 

  • Wang, H., and E. S. Takle, 1996: On shelter efficiency of shelterbelts in oblique wind. Agricultural and Forest Meteorology, 81, 95–117, doi: 10.1016/0168-1923(95)02311-9.

    Article  Google Scholar 

  • Weber, N. J., M. A. Lazzara, L. K. Keller, and J. J. Cassano, 2016: The extreme wind events in the ross island region of Antarctica. Wea. Forecasting, 31, 985–1000, doi: 10.1175/WAF-D-15-0125.1.

    Article  Google Scholar 

  • Yakhot, V., S. A. Orszag, S. Thangam, T. B. Gatski, and C. G. Speziale, 1992: Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4, 1510–1520, doi: 10.1063/1.858424.

    Article  Google Scholar 

  • You, K.-P., and Y.-M. Kim, 2009: Effect of protection against wind according to the variation porosity of wind fence. Environmental Geology, 56, 1193–1203, doi: 10.1007/s00254-008-1219-y.

    Article  Google Scholar 

  • Yu, Y., X. M. Cai, and X. S. Qie, 2007: Influence of topography and large-scale forcing on the occurrence of katabatic flow jumps in Antarctica: Idealized simulations. Adv. Atmos. Sci., 24, 819–832, doi: 10.1007/s00376-007-0819-x.

    Article  Google Scholar 

  • Zhang, N., J.-H. Kang, and S.-J. Lee, 2010: Wind tunnel observation on the effect of a porous wind fence on shelter of saltating sand particles. Geomorphology, 120, 224–232, doi: 10.1016/j.geomorph.2010.03.032.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions. This study was funded by a Korea Polar Research Institute project (PE16250). Hateak KWON is financially supported by PE17010 of Korea Polar Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Jin Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JW., Kim, JJ., Choi, W. et al. Effects of wind fences on the wind environment around Jang Bogo Antarctic Research Station. Adv. Atmos. Sci. 34, 1404–1414 (2017). https://doi.org/10.1007/s00376-017-6333-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-6333-x

Key words

关键词

Navigation