Skip to main content
Log in

Effects of surface flux parameterization on the numerically simulated intensity and structure of Typhoon Morakot (2009)

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The effects of surface flux parameterizations on tropical cyclone (TC) intensity and structure are investigated using the Advanced Research Weather Research and Forecasting (WRF-ARW) modeling system with high-resolution simulations of Typhoon Morakot (2009). Numerical experiments are designed to simulate Typhoon Morakot (2009) with different formulations of surface exchange coefficients for enthalpy (C K) and momentum (C D) transfers, including those from recent observational studies based on in situ aircraft data collected in Atlantic hurricanes. The results show that the simulated intensity and structure are sensitive to C K and C D, but the simulated track is not. Consistent with previous studies, the simulated storm intensity is found to be more sensitive to the ratio of C K/C D than to C K or C D alone. The pressure–wind relationship is also found to be influenced by the exchange coefficients, consistent with recent numerical studies. This paper emphasizes the importance of C D and C K on TC structure simulations. The results suggest that C D and C K have a large impact on surface wind and flux distributions, boundary layer heights, the warm core, and precipitation. Compared to available observations, the experiment with observed C D and C K generally simulated better intensity and structure than the other experiments, especially over the ocean. The reasons for the structural differences among the experiments with different C D and C K setups are discussed in the context of TC dynamics and thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bao, J.-W., S. G. Gopalakrishnan, S. A. Michelson, F. D. Marks, and M. T. Montgomery, 2012: Impact of physics representations in the HWRFX on simulated hurricane structure and pressure-wind relationships. Mon. Wea. Rev., 140, 3278–3299.

    Article  Google Scholar 

  • Beljaars, A. C. M., and P. Viterbo, 1998: Role of the boundary layer in a numerical weather prediction model. Clear and Cloudy Boundary Layers, A. A. M. Holtslag, and P. G. Duynkerke, Eds., Royal Netherlands Academy of Arts and Sciences, Amsterdam, 287–304.

  • Bell, M. M., M. T. Montgomery, and K. A. Emanuel, 2012: Air-sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69, 3197–3222.

    Article  Google Scholar 

  • Black, P. G., and Coauthors, 2007: Air-sea exchange in hurricanes: Synthesis of observations from the coupled boundary layer air-sea transfer experiment. Bull. Amer. Meteor. Soc., 88, 357–374.

    Article  Google Scholar 

  • Braun, S. A., and W.-K., Tao, 2000: Sensitivity of high-resolution simulations of hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 3941–3961.

    Article  Google Scholar 

  • Bryan, G. H., 2012: Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated Hurricanes. Mon. Wea. Rev., 140, 1125–1143.

    Article  Google Scholar 

  • Carlson, T. N., and F. E. Boland, 1978: Analysis of urban-rural canopy using a surface heat flux/temperature model. J. Appl. Meteor., 17, 998–1013.

    Article  Google Scholar 

  • Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639–640.

    Article  Google Scholar 

  • Chen, S. H., and W.-Y. Sun, 2002: A one-dimensional time dependent cloud model. J. Meteor. Soc. Japan, 80(1), 99–118.

    Article  Google Scholar 

  • Chien, F.-C., and H.-C. Kuo, 2011: On the extreme rainfall of Typhoon Morakot (2009). J. Geophys. Res., 116, D05104, doi: 10.1029/2010JD015092.

    Google Scholar 

  • Davis, C., and Coauthors, 2008: Prediction of landfalling hurricanes with the advanced hurricane WRF model. Mon. Wea. Rev., 136, 1990–2005.

    Article  Google Scholar 

  • DeCosmo, J., K.B. Katsaros, S. D. Smith, R. J. Anderson, W. A. Oost, K. Bumke, and H. Chadwick, 1996: Air-sea exchange of water vapor and sensible heat: The Humidity Exchange over the Sea (HEXOS) results. J. Geophys. Res., 101, 12 001–12016.

    Article  Google Scholar 

  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong wind. Geophys. Res. Lett., 31, L18306, doi: 10.1029/2004GL 019460.

    Article  Google Scholar 

  • Drennan, W. M., J. A. Zhang, J. R. French, C. McCormick, and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part II: Latent heat flux. J. Atmos. Sci., 64, 1103–1115.

    Article  Google Scholar 

  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two dimensional model. J. Atmos. Sci., 46, 3077–3107.

    Article  Google Scholar 

  • Dudhia, J., and Coauthors, 2008: Prediction of Atlantic tropical cyclones with the Advanced Hurricane WRF (AHW) model. 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, Florida, Preprint 18A. 375.

    Google Scholar 

  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22(6), 1065–1092.

    Article  Google Scholar 

  • Liu, Y. B., D.-L. Zhang, and M. K. Yau, 1999: A multiscale numerical study of Hurricane Andrew (1992). Part II: Kinematics and inner-core structures. Mon. Wea. Rev., 127, 2597–2616.

    Article  Google Scholar 

  • Malkus, J. S., and H. Riehl, 1960: On the dynamics and energy transformations in steady-state hurricanes. Tellus, 12, 1–20.

    Article  Google Scholar 

  • Ming, J., Y. Q. Ni, and X. Y. Shen, 2009: The dynamical characteristics and wave structure of typhoon Rananim (2004). Adv. Atmos. Sci., 26, 523–542, doi: 10.1007/s00376-009-0523-0.

    Article  Google Scholar 

  • Ming, J., J. J. Song, B. J. Chen, and K. F. Wang, 2012: Boundary layer structure in typhoon Saomai (2006): Understanding the effects of exchange coefficient. J. Trop. Meteor., 18(2), 195–206.

    Google Scholar 

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 663–16 682.

    Article  Google Scholar 

  • Montgomery, M. T., R. K. Smith, and S. V. Nguyen, 2010: Sensitivity of tropical-cyclone models to the surface drag coefficient. Quart. J. Roy. Meteor. Soc., 136, 1945–1953, doi: 10.1002/qj.702.

    Article  Google Scholar 

  • Noh, Y., W. G. Cheon, S. Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound. -Layer Meteor., 107(2), 401–427.

    Article  Google Scholar 

  • Nolan, D. S., J. A. Zhang, and D. P. Stern, 2009: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ data and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and the outer-core boundary layer structure. Mon. Wea. Rev., 137, 3651–3674.

    Article  Google Scholar 

  • Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 3–40.

    Article  Google Scholar 

  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279–283.

    Article  Google Scholar 

  • Rosenthal, S. L., 1971: The response of a tropical cyclone model to variations in boundary layer parameters, initial conditions, lateral boundary conditions and domain size. Mon. Wea. Rev., 99, 767–777.

    Article  Google Scholar 

  • Rotunno, R., and K. A. Emanuel, 1987: An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542–561.

    Article  Google Scholar 

  • Schwartz, C. S., Z. Q. Liu, Y. S. Chen, and X. Y. Huang, 2012: Impact of assimilating microwave radiances with a limited-area ensemble data assimilation system on forecasts of Typhoon Morakot. Wea. Forecasting, 27, 424–437.

    Article  Google Scholar 

  • Skamarock, W. C., and Coauthors, 2008: Description of the advanced research WRF version 3, Rep. NCAR/TN-475++STR, Natl. Cent. for Atmos. Res., Boulder, Colo., 113 pp.

    Google Scholar 

  • Smith, R. K., M. T. Montgomery, and N. Van Sang, 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135, 1321–1335.

    Article  Google Scholar 

  • Smith, S. D., 1980: Wind stress and heat flux over the ocean in gale force winds. J. Phys. Oceanogr., 10, 709–726.

    Article  Google Scholar 

  • Stern, D. P., and D. S. Nolan, 2012: On the height of the warm core in tropical cyclones. J. Atmos. Sci., 69, 1657–1680.

    Article  Google Scholar 

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

    Book  Google Scholar 

  • Wang, C.-C., H.-C. Kuo, Y. H. Chen, H.-L. Huang, C.-H. Chung, and K. Tsuboki, 2012: Effects of asymmetric latent heating on typhoon movement crossing Taiwan: The case of Morakot (2009) with extreme rainfall. J. Atmos. Sci., 69, 3172–3196.

    Article  Google Scholar 

  • Wang, C.-C., H.-C. Kuo, T.-C. Yeh, C.-H. Chung, Y. H. Chen, S.-Y. Huang, Y. W. Wang, and C.-H. Liu, 2013: Highresolution quantitative precipitation forecasts and simulations by the Cloud-Resolving Storm Simulator (CReSS) for Typhoon Morakot (2009). J. Hydrol., 506, 26–41.

    Article  Google Scholar 

  • Xie, B. G., and F. Q. Zhang, 2012: Impacts of typhoon track and island topography on the heavy rainfalls in Taiwan associated with Morakot (2009). Mon. Wea. Rev., 140, 3379–3394.

    Article  Google Scholar 

  • Zhang, D. L., Y. B. Liu, and M. K. Yau, 2001: A multiscale numerical study of Hurricane Andrew (1992). Part IV: Unbalanced flows. Mon. Wea. Rev., 129, 92–107.

    Article  Google Scholar 

  • Zhang, D. L., and H. Chen, 2012: Importance of the upperlevel warm core in the rapid intensification of a tropical cyclone. Geophys. Res. Lett., 39, L02806, doi: 10.1029/2011GL 050578.

    Google Scholar 

  • Zhang, F. Q., Y. H. Weng, Y.-H. Kuo, J. S. Whitaker, and B. G. Xie, 2010: Predicting Typhoon Morakot’s catastrophic rainfall with a convection-permitting mesoscale ensemble system. Wea. Forecasting, 25, 1816–1825.

    Article  Google Scholar 

  • Zhang, J. A., P. G. Black, J. R. French, and W. M. Drennan, 2008: First direct measurements of enthalpy flux in the hurricane boundary layer: the CBLAST results. Geophys. Res. Lett., 35(14), L14813, doi: 10.1029/2008GL034374.

    Article  Google Scholar 

  • Zhang, J. A., R. F. Rogers, D. S. Nolan, and F. D. Marks, 2011: On the characteristic height scales of the hurricane boundary layer. Mon. Wea. Rev., 139, 2523–2535.

    Article  Google Scholar 

  • Zhang, J. A., S. Gopalakrishnan, F. D. Marks, R. F. Rogers, and V. Tallapragada, 2012: A developmental framework for improving hurricane model physical parameterizations using aircraft observations. Trop. Cycl. Res. Rev., 1(4), 419–429, doi: 10.6057/2012TCRR04.01.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Ming.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ming, J., Zhang, J.A. Effects of surface flux parameterization on the numerically simulated intensity and structure of Typhoon Morakot (2009). Adv. Atmos. Sci. 33, 58–72 (2016). https://doi.org/10.1007/s00376-015-4202-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-015-4202-z

Key words

Navigation