Skip to main content
Log in

Analysis of the structure and propagation of a simulated squall line on 14 June 2009

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

A squall line on 14 June 2009 in the provinces of Jiangsu and Anhui was well simulated using the Advanced Regional Prediction System (ARPS) model. Based on high resolution spatial and temporal data, a detailed analysis of the structural features and propagation mechanisms of the squall line was conducted. The dynamic and thermodynamic structural characteristics and their causes were analyzed in detail. Unbalanced flows were found to play a key role in initiating gravity waves during the squall line’s development. The spread and development of the gravity waves were sustained by convection in the wave-CISK process. The squall line’s propagation and development mainly relied on the combined effect of gravity waves at the midlevel and cold outflow along the gust front. New cells were continuously forced by the cold pool outflow and were enhanced and lifted by the intense upward motion. At a particular phase, the new cells merged with the updraft of the gravity waves, leading to an intense updraft that strengthened the squall line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Biggerstaff, M. I., and R. A. Houze Jr., 1991: Kinematic and precipitation structure of the 10–11 June 1985 squall line. Mon. Wea. Rev., 119, 3034–3065.

    Article  Google Scholar 

  • Biggerstaff, M. I., and R. A. Houze Jr., 1993: Kinematics and microphysics of the transition zone of the10–11 June 1985 suqall line. J. Atmos. Sci., 50, 3091–3110.

    Article  Google Scholar 

  • Bosart, L. F., and J. P. Cussene, 1986: Mesoscale structure in the megalopolitan snowstorm of 11-12 February 1983 Part III: A large-amplitude gravity wave. J. Atmos. Sci., 43, 924–939.

    Article  Google Scholar 

  • Braun, S. A., and R. A. Houze Jr., 1994: The transition zone and secondary maximum of radar reflectivity behind a midlatitude squall line: Results retrieved from Doppler radar data. J. Atmos. Sci., 51, 2733–2755.

    Article  Google Scholar 

  • Brown, J. M., 1979: Mesoscale unsaturated downdrafts driven by rainfall evaporation: A numerical study. J. tAtmos. Sci., 36, 313–338.

    Article  Google Scholar 

  • Browning, K. A., and F. H. Ludlam, 1962: Airflow in convective storms. Quart. J. Roy. Meteor. Soc., 88, 117–135.

    Article  Google Scholar 

  • Bryan, G. H., J. C. Knievel, and M. D. Parker, 2006: A multimodel assessment of RKW theory’s relevance to squall-line characteristics. Mon. Wea. Rev., 134, 2772–2792.

    Article  Google Scholar 

  • Cahn, A. Jr, 1945: An investigation of the free oscillations of a simple current system. J. Meteor., 2, 113–119.

    Article  Google Scholar 

  • Cai, Z. Y., H. Z. Li, and H. A. Li, 1988: Structure and evolution of squall line systems in North China. Chinese J. Atmos. Sci., 12, 191–199. (in Chinese)

    Google Scholar 

  • Chen, M. X., and Y. C. Wang, 2012: Numerical simulation study of interactional effects of the low level vertical wind shear with the cold pool on a squall line evolution in North China. Acta Meteorologica Sinica, 70, 371–386. (in Chinese)

    Google Scholar 

  • Curry, M. J., and R. C. Murty, 1974: Thunderstorm-generated gravity waves. J. Atmos. Sci., 31, 1402–1408.

    Article  Google Scholar 

  • Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnosis of cyclogenesis. Mon. Wea. Rev., 119, 1929–1952.

    Article  Google Scholar 

  • Fovell, R. G., and Y. Ogura, 1988: Numerical simulation of a midlatitude squall line in two dimensions. J. Atmos. Sci., 45, 3846–3879.

    Article  Google Scholar 

  • Fovell, R. G., 2002: Upstream influence of numerically simulated squall line storms. Quart. J. Roy. Meteor. Soc., 128, 893–912.

    Article  Google Scholar 

  • Fovell, R. G., and Y. Ogura, 1989: Effects of vertical wind shears on numerically simulated multicell storm structure. J. Atmos. Sci., 46, 3144–3176.

    Article  Google Scholar 

  • Fritsch, J. M., and C. F. Chappell, 1980: Numerical prediction of convectively driven mesoscale pressure systems, Part I: Convective parameterization. J. Atmos. Sci., 37, 1722–1733.

    Article  Google Scholar 

  • Fujita, T. T., 1955: Results of detailed synoptic studies of squall lines. Tellus, 7, 405–436.

    Article  Google Scholar 

  • Gallus, W. A. Jr., N. A. Snook, and E. V. Johnson, 2008: Spring and summer severe weather reports over the Midwest as a function of convective mode: A preliminary study. Wea. Forecasting, 23, 101–113.

    Article  Google Scholar 

  • Gao, S. T., X. R. Wang, and Y. S. Zhou, 2004: Generation of generalized moist potential vorticity in a frictionless and moist adiabatic flow. Geophys. Res. Lett., 31, doi: 10.1029/2003GL019152.

  • Gao, S. T., Y. Zhou, T. Lei, and J. Sun, 2005: Analyses of hot and humid weather in Beijing city in summer and its dynamical identification. Science China Earth Sciences, 48, 128–137.

    Article  Google Scholar 

  • Gao, S. T., S. Yang, and B. Chen, 2010: Diagnostic analyses of dry intrusion and nonuniformly saturated instability during a rainfall event. J. Geophys. Res.: Atmos., 115(D2), doi: 10.1029/2009JD012467.

  • Gong, X. L., Z. M.Wu, and G. Fu, 2005: Analysis of the mesoscale characteristics about a severe thunderstorm in North China. Chinese J. Atmos. Sci., 29, 453–464. (in Chinese)

    Google Scholar 

  • He, Q. Q., H. C. Lu, and M. Zhang, 1992: A mesoscale study of squall line in warm sec-tor of Jiang-Huai area. Acta Meteorologica Sinica, 50, 290–300. (in Chinese)

    Google Scholar 

  • Houze, R. A., Jr, M. I. Biggerstaff, S. A. Rutledge, and B. F. Smull, 1989: Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc. 70, 608–619.

    Article  Google Scholar 

  • Howard, L. N., 1961: Note on paper of John W. Miles. J. Fluid Mech., 10, 509–512.

    Article  Google Scholar 

  • Johnson, R. H., and P. J. Hamilton, 1988: The relationship of surface pressure features to the precipitation and the airflow structure of an intense midlatitude squall line. Mon.Wea. Rev., 116, 1444–1472.

    Article  Google Scholar 

  • Kaplan, M. L., and V. M. Karyampudi, 1992: Meso-bata scale numerical simulations of terrain drag-induced along-stream circulations. Part II: Concentration of potential vorticity within dryline bulges. Meteor. Atmos. Phys., 49, 157–185.

    Article  Google Scholar 

  • Koch, S. E., and P. B. Dorian, 1988: A mesoscale gravity wave event observed during CCOPE. Part III: Wave environment and probable source mechanisms. Mon.Wea. Rev., 116, 2570–2592.

    Article  Google Scholar 

  • Koch, S. E., and Coauthors, 2005: Turbulence and gravity waves within an upper-level front??J. Atmos. Sci., 62, 3885–3908.

    Article  Google Scholar 

  • Lafore, J. P., and M. W. Moncrieff, 1989: A numerical investigation of the organization and interaction of the convective and stratiform regions of tropical squall lines. J. Atmos. Sci., 46, 521–544.

    Article  Google Scholar 

  • LeMone, M. A., 1983: Momentum flux by a line of cumulonimbus. J. Atmos. Sci., 40, 1815–1834.

    Article  Google Scholar 

  • Li, M. C., 1976: The nonlinear process of squall line formation. Science China (A), 6, 592–601. (in Chinese)

    Google Scholar 

  • Li, M. C., 1978: The role of gravity wave in torrential rain. Chinese J. Atmos. Sci., 2, 201–209. (in Chinese)

    Google Scholar 

  • Li, M. C., 1981: The nonlinear process of squall line formation and KDV equation. Science China, 3, 341–350. (in Chinese)

    Google Scholar 

  • Mastrantonio, G., F. Einaudi, and D. Fua, 1976: Generation of gravity waves by jet streams in the atmosphere. J. Atmos. Sci., 33, 1730–1738.

    Article  Google Scholar 

  • Milbrandt, J. A. and M. K. Yau, 2005a: A multi-moment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter}. J. Atmos. Sci., 62, 3051–3064.

    Article  Google Scholar 

  • Milbrandt, J. A. and M. K. Yau, 2005b: A multi-moment bulk microphysics parameterization. Part II: A proposed threemoment closure and scheme description. J. Atmos. Sci., 62, 3065–3081.

    Article  Google Scholar 

  • Miles, J. W., 1961: On the stability of heterogeneous shear flows. J. Fluid Mech., 10, 496–508.

    Article  Google Scholar 

  • Moore, J. T., and W. A. Abeling, 1988: A diagnosis of unbalanced flow in upper levels during the AEV-SESAME I period. Mon. Wea. Rev., 116, 2425–2436.

    Article  Google Scholar 

  • Newton, C. W., 1966: Circulations in large sheared cumulonimbus. Tellus, 18, 699–743.

    Article  Google Scholar 

  • Newton, C. W., 1950: Structure and mechanism of the prefrontal squall line. J. Meteor., 7, 210–222.

    Article  Google Scholar 

  • Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 3413–3436.

    Article  Google Scholar 

  • Raymond, D. J., 1983: Waves-CISK in mass flux form. J. Atmos. Sci., 40, 2561–2572.

    Article  Google Scholar 

  • Raymond, D. J., 1984: A Wave-CISK model of squall lines. J. Atmos. Sci., 41 1946–1958.

    Google Scholar 

  • Rossby, C. G., 1938: On the mutual adjustment of pressure and velocity distributions in certain simple current systems II. J. Mar. Res., 1, 239–263.

    Article  Google Scholar 

  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong long-lived squall lines. J. Atmos. Sci., 45, 463–484.

    Article  Google Scholar 

  • Roux, F., J. Testud, M. Payen, and B. Pinty, 1984: West African squall line thermodynamic structure retrieved from dual- Doppler radar observations. J. Atmos. Sci., 41, 3104–3121.

    Article  Google Scholar 

  • Shou, S. W., L. L. Shen, and X. P. Yao, 2003: Mesoscale Meteorology. China Meteorological Press, Beijing, 370 pp. (in Chinese)

    Google Scholar 

  • Smull, B. F., and R. A. Houze Jr., 1985: A midlatitude squall line with a trailing region of stratiform rain: Radar and satellite observations. Mon. Wea. Rev., 113, 117–133.

    Article  Google Scholar 

  • Smull, B. F., and R. A. Houze Jr., 1987: Rear inflow in squall lines with trailing stratiform precipitation. Mon. Wea. Rev., 115, 2869–2889.

    Article  Google Scholar 

  • Stobie, J. G., F. Einaudi, and L. W. Uccellini, 1983: A case study of gravity waves convective storms interaction 9 May 1979. J. Atmos. Sci., 40, 2804–2830.

    Article  Google Scholar 

  • Sun, H. L., Y. L. Luo, R. H. Zhang, L. P. Liu, and G. L. Wang, 2011: Analysis on the mature-stage features of the severe squall line occurring over the Yellow River and Huaihe Riber basins during 3–4 June 2009. Chinese J. Atmos. Sci., 35, 105–120. (in Chinese)

    Article  Google Scholar 

  • Trier, S. B., W. C. Skamarock, M. A. Lemome, and D. B. Parsons, 1996: Structure and evolution of the 22 February 1993 TOGA COARE squall line: Numerical simulations. J. Atmos. Sci., 53, 2861–2886.

    Article  Google Scholar 

  • Wang, X. F., B. W. Hu, and C. Li, 2010: Observation study and numerical simulation of the structure for a squall line case in Hubei. Plateau Meteorology, 29, 471–485. (in Chinese)

    Google Scholar 

  • Wakimoto, R. M., 1982: Life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data. Mon. Wea. Rev., 110, 1060–1082.

    Article  Google Scholar 

  • Weisman, M. L., 1992: The role of convectively generated rearinflow jets in the evolution of long-lived mesoconvectives systems. J. Atmos. Sci., 49, 1826–1847.

    Article  Google Scholar 

  • Weisman, M. L., 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361–382.

    Article  Google Scholar 

  • Weisman, M. L., and R. Rotunno, 2005: Reply. J. Atmos. Sci., 62, 2997–3002.

    Article  Google Scholar 

  • Weisman, M. L., J. B. Klemp, and R. Rotunno, 1988: Structure and evolution of numerically simulated squall lines. J. Atmos. Sci., 45, 1990–2013.

    Article  Google Scholar 

  • Wilhelmson, R. B., and C. S. Chen, 1982: A simulation of the development of successive cells along a cold outflow boundary. J. Atmos. Sci., 39, 1466–1483.

    Article  Google Scholar 

  • Wu, H. Y., H. S. Chen, Y. F. Jiang, L. N. Yao, and S. Y. Cao, 2013: Observation and simulation analyses on dynamical structure features in a severe line process on 3 June 2009. Plateau Meteorology, 32, 1084–1094. (in Chinese)

    Google Scholar 

  • Xu, X. F., and Z. B. Sun, 2003: Dynamic study on influence of gravity wave induced by unbalanced flow on Meiyu front heavy rain. Acta Meteorologica Sinica, 61, 656–664. (in Chinese)

    Google Scholar 

  • Yang, M. J., and R. A. Houze Jr, 1995a: Multicell squall-line structure as a manifestation of vertically trapped gravity waves. Mon. Wea. Rev., 123, 641–661.

    Article  Google Scholar 

  • Yang, M. J., and R. A. Houze Jr, 1995b: Sensitivity of squall-line rear inflow to ice microphysics and environmental humidity. Mon. Wea. Rev., 123, 3175–3193.

    Article  Google Scholar 

  • Yao, J. Q., J. H. Dai, and Z. Q. Yao, 2005: Case analysis of the formation and evolution of 12 July 2004 severe squall line. Journal of Applied Meteorological Science, 16, 746–754. (in Chinese)

    Google Scholar 

  • Zack, J. W., and M. L. Kaplan, 1987: Numerical simulations of the subsynoptic features associated with the AVE-SESAME I case Part I: The pre-convective environment. Mon. Wea. Rev., 115, 2367–2394.

    Article  Google Scholar 

  • Zhang, D. L., and J. M. Fritsch, 1987: Numerical simulation of the meso-scale structure and evolution of the 1987 Johnstown flood. Part III: Internal gravity waves and the squall lin. J. Atmos. Sci., 45, 1252–1268.

    Article  Google Scholar 

  • Zhang, F., S. E. Koch, C. A. Davis, and M. L. Kaplan, 2000: A survey of unbalanced flow diagnostics and their application. Adv. Atmos. Sci., 17, 165–173, doi: 10.1007/s00376-000-0001-1.

    Article  Google Scholar 

  • Zhang, F. Q., and S. E. Koch, C. A. Davis, and M. L. Kaplan, 2001: Wavelet analysis and the governing dynamics of a large-amplitude mesoscale gravity-wave event along the east coast of the United States. Quart. J. Roy. Meteor. Soc., 127, 2209–2245.

    Article  Google Scholar 

  • Zhu, L. L., Z. M. Wu, Q. G. Tai, W. Wei, and J. Y. Zhang, 2009: Analysis of gravity wave characteristics of a strong squall line process in April 2006 in Shandong province. Journal of Tropical Meteorology, 25, 465–474. (in Chinese)

    Google Scholar 

  • Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line circulation. Mon. Wea. Rev., 105, 1568–1589.

    Article  Google Scholar 

  • Zulicke, C., and D. Peters, 2006: Simulation of inertia-gravity waves in a poleward-breaking Rossby wave. J. Atmos. Sci., 63, 3253–3276

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingkun Ran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Ran, L. & Sun, X. Analysis of the structure and propagation of a simulated squall line on 14 June 2009. Adv. Atmos. Sci. 32, 1049–1062 (2015). https://doi.org/10.1007/s00376-014-4100-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-014-4100-9

Key words

Navigation