Skip to main content
Log in

Characterization and source apportionment of volatile organic compounds in urban and suburban Tianjin, China

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Tianjin is the third largest megacity and the fastest growth area in China, and consequently faces the problems of surface ozone and haze episodes. This study measures and characterizes volatile organic compounds (VOCs), which are ozone precursors, to identify their possible sources and evaluate their contribution to ozone formation in urban and suburban Tianjin, China during the HaChi (Haze in China) summer campaign in 2009. A total of 107 species of ambient VOCs were detected, and the average concentrations of VOCs at urban and suburban sites were 92 and 174 ppbv, respectively. Of those, 51 species of VOCs were extracted to analyze the possible VOC sources using positive matrix factorization. The identified sources of VOCs were significantly related to vehicular activities, which specifically contributed 60% to urban and 42% to suburban VOCs loadings in Tianjin. Industrial emission was the second most prominent source of ambient VOCs in both urban and suburban areas, although the contribution of industry in the suburban area (36%) was much higher than that at the urban area (16%). We conclude that controlling vehicle emissions should be a top priority for VOC reduction, and that fast industrialization and urbanization causes air pollution to be more complex due to the combined emission of VOCs from industry and daily life, especially in suburban areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agency for Toxic Substances and Disease Registry (ATSDR), 1997: Toxicological profile for benzene (update). Agency for Toxic Substances and Disease Registry, Public Health Service, U. S. Department of Health and Human Services, Atlanta, G. A.

    Google Scholar 

  • Atkinson, R., 2000: Atmospheric chemistry of VOCs and NOx. Atmos. Environ., 34, 2063–2101.

    Article  Google Scholar 

  • Barletta, B., S. Meinardi, F. S. Rowland, C. Chan, X. M. Wang, S. C. Zou, L. Y. Chan, D. R. Blake, 2005: Volatile organic compounds in 43 Chinese cities. Atmos. Environ., 39, 5979–5990.

    Article  Google Scholar 

  • Brown, S. G., A. F. Frankel, and H. R. Hafner, 2007: Source apportionment of VOCs in the Los Angeles area using positive matrix factorization. Atmos. Environ., 41, 227–237.

    Article  Google Scholar 

  • Cai, C. J., F. H. Geng, X. X. Tie, Q. Yu, J. L. An, 2010: Characteristics and source apportionment of VOCs measured in Shanghai, China. Atmos. Environ., 44, 5005–5014.

    Article  Google Scholar 

  • Geng, F. H., C. S. Zhao, X. Tang, G. L. Lu, and X. X. Tie, 2007: Analysis of ozone and VOCs measured in Shanghai: A case study. Atmos. Environ., 41, 989–1001.

    Article  Google Scholar 

  • Geng, F. H., and Coauthors, 2008: Characterizations of ozone, NOX, and VOCs measured in Shanghai, China. Atmos. Environ., 42, 6873–6883.

    Article  Google Scholar 

  • Grosjean, E., R. A., Rasmussen, and D. Grosjean, 1999: Toxic air contaminants in Porto Alegre. Brazil Environ. Sci. Technol., 33, 1970–1978.

    Article  Google Scholar 

  • Guo, H., T. Wang, and P. K. K. Louie, 2004: Source apportionment of ambient non-methane hydrocarbons in Hong Kong: Application of a principal component analysis/absolute principal component scores (PCA/APCS) receptor model. Environmental Pollution, 129, 489–498.

    Article  Google Scholar 

  • Han, M., X. Q. Lu, L. Ran, C. S. Zhao, S. Q. Han, J. L. Bao, K. H. Zou, and F. Y. Yan, 2011: Source apportionment of volatile organic compounds in urban Tianjin in the summer. Environ. Sci. Tech., 34(10), 76–80. (in Chinese)

    Google Scholar 

  • Harley, R. A., M. P. Hannigan, and G. R. Cass, 1992: Respeciation of organic gas emissions and the detection of excess unburned gasoline in the atmosphere. Environ. Sci. Tech., 26, 2395–2408.

    Article  Google Scholar 

  • Henry, R. C., 1997: History and fundamentals of multivariate air quality receptor models. Chemometrics and Intelligent Laboratory Systems, 37, 37–42.

    Article  Google Scholar 

  • Heo, J.-B., P. K. Hopke, and S.-M. Yi, 2009: Source apportionment of PM2.5 in Seoul, Korea. Atmos. Chem. Phys., 9, 4957–4971.

    Article  Google Scholar 

  • Kim, E., P. K. Hopke, and E. S. Edgerton, 2003: Source identification of Atlanta aerosol by positive matrix factorization. Journal of Air and Waste Management Association, 53(6), 731–739.

    Article  Google Scholar 

  • Latella, A., G. Stani, L. Cobelli, M. Duane, H. Junninen, C. Astorga, and B. R. Larsen, 2005: Semicontinuous GC analysis and receptor modeling for source apportionment of ozone precursor hydrocarbons in Bresso, Milan, 2003. J. Chromatography A., 1071, 29–39.

    Article  Google Scholar 

  • Liu, Y., M. Shao, J. Zhang, L. L. Fu, and S. H. Lu, 2005: Distributions and source apportionment of ambient volatile organic compounds in Beijing City, China. J. Environ. Sci. Health., Part A: Tox. Hazard. Subst. Environ. Eng., 40, 1843–1860.

    Article  Google Scholar 

  • Liu, Y., M. Shao, L. L. Fu, S. H. Lu, L. M. Zeng, and D. G. Tang, 2008a: Source profiles of volatile organic compounds measured in China: Part I. Atmos. Environ., 42, 6247–6260.

    Article  Google Scholar 

  • Liu, Y., M. Shao, S. H. Lu, C. C. Chang, J. L. Wang, and L. L. Fu, 2008b: Source apportionment of ambient volatile organic compounds in the Pearl River Delta, China: Part II. Atmos. Environ., 42, 6261–6274.

    Article  Google Scholar 

  • Lu, X. Q., M. Han, L. Ran, S. Q. Han, and C. S. Zhao, 2011: Characteristics of nonmethane organic compounds and their ozone formation potentials in downtown Tianjin in summer. Acta Scientiae Circumstantiae, 31(2), 373–380. (in Chinese)

    Google Scholar 

  • Paatero, P., 1997: Least squares formulation of robust non-negative factor analysis. Chemome-trics and Intelligent Laboratory Systems, 37, 23–35.

    Article  Google Scholar 

  • Paatero, P., and U. Tapper, 1994: Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5, 111–126.

    Article  Google Scholar 

  • Polissar, A. V., P. K. Hopke, P. Paatero, W. C. Malm, and J. F. Sisler, 1998: Atmospheric aerosol over Alaska 2. Elemental composition and sources. J. Geophys. Res., 103(D15), 19 045–19 057.

    Article  Google Scholar 

  • Ran, L., and Coauthors, 2011: VOC reactivity and its effect on ozone production during the HaChi summer campaign. Atmos. Chem. Phys., 11, 4657–4667.

    Article  Google Scholar 

  • Song, Y., M. Shao, Y. Liu, S. H., Lu, W. Kuster, P. Goldan, and S. D. Xie, 2007: Source apportionment of ambient volatile organic compounds in Beijing. Environ. Sci. Technol., 41, 4348–4353.

    Article  Google Scholar 

  • Srivastava, A., A. E. Joseph, S. More, A. Patil, R. C. Dixit, and M. Prakash, 2005: Air toxics in ambient air of Delhi. Atmos. Environ., 39, 59–71.

    Article  Google Scholar 

  • Suthawaree, J., S. Kato, P. Pochanart, Y. Kanaya, H. Akimoto, Z. Wang, and Y. Kajii, 2012: Influence of Beijing outflow on volatile organic compounds (VOC) observed at a mountain site in North China plain. Atmos. Res., 111, 46–57.

    Article  Google Scholar 

  • Tie, X. X., F. H. Geng, L. Peng, W. Gao, and C. S. Zhao, 2009: Measurement and modeling of O3 variability in Shanghai, China: Application of the WRF-Chem model. Atmos. Environ., 43, 4289–4302.

    Article  Google Scholar 

  • Watson, J. G., J. C. Chow, and E. M. Fujita, 2001: Review of volatile organic compound source apportionment by chemical mass balance. Atmos. Environ., 35, 1567–1548.

    Article  Google Scholar 

  • Ye, W. H., X. H. Sun, J. S. Liu, H. F. Pan, and X. L. Pang, 2009: Study on air pollution of VOC in arterial traffic. Environmental Monitoring in China, 25(6), 87–89. (in Chinese)

    Google Scholar 

  • Yuan, B., and Coauthors, 2012: Measurements of ambient hydrocarbons and carbonyls in the Pearl River Delta (RPD), China. Atmos. Res., 116, 93–104.

    Article  Google Scholar 

  • Yuan, Z. B., A. K. H. Lau, M. Shao, P. K. K. Louie, S. C. Liu, and T. Zhu, 2009: Source analysis of volatile organic compounds by positive matrix factorization in urban and rural environments in Beijing. J. Geophys. Res., 114, D00G15, doi: 10.1029/2008JD011190.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueqiang Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, M., Lu, X., Zhao, C. et al. Characterization and source apportionment of volatile organic compounds in urban and suburban Tianjin, China. Adv. Atmos. Sci. 32, 439–444 (2015). https://doi.org/10.1007/s00376-014-4077-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-014-4077-4

Key words

Navigation