Skip to main content
Log in

Effect of baroclinicity on vortex axisymmetrization. Part I: Barotropic basic vortex

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The barotropic and baroclinic disturbances axisymmetrized by the barotropic basic vortex are examined in an idealized modeling framework consisting of two layers. Using a Wentzel-Kramers-Brillouin approach, the radial propagation of a baroclinic disturbance is shown to be slower than a barotropic disturbance, resulting in a slower linear axisymmetrization for baroclinic disturbances. The slower-propagating baroclinic waves also cause more baroclinic asymmetric kinetic energy to be transferred directly to the barotropic symmetric vortex than from barotropic disturbances, resulting in a faster axisymmetrization process in the nonlinear baroclinic wave case than in the nonlinear barotropic wave case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthes, R. A., 1972: Development of asymmetries in a three-dimensional numerical model of the tropical cyclone. Mon. Wea. Rev., 100, 461–476.

    Article  Google Scholar 

  • Carr, L. E., and R. T. Williams, 1989: Barotropic vortex stability to perturbations from axisymmetry. J. Atmos. Sci., 46, 3177–3191.

    Article  Google Scholar 

  • Enagonio, J., and M. T. Montgomery, 2001: Tropical cyclogenesis via convectively forced vortex Rossby waves in a shallow water primitive equation model. J. Atmos. Sci., 58, 685–705.

    Article  Google Scholar 

  • Guinn, T. A., and W. H. Schubert, 1993: Hurricane spiral bands. J. Atmos. Sci., 50, 3380–3403.

    Article  Google Scholar 

  • Kurihara, Y., 1975: Budget analysis of a tropical cyclone simulated in an axisymmetric numerical model. J. Atmos. Sci., 32, 25–59.

    Article  Google Scholar 

  • Kurihara, Y., and R. E. Tuleya, 1974: Structure of a tropical cyclone developed in a three dimensional numerical simulation model. J. Atmos. Sci., 31, 893–919.

    Article  Google Scholar 

  • Kwon, Y. C., and W. M., Frank, 2008: Dynamic instabilities of simulated hurricane-like vortices and their impacts on the core structure of hurricanes. Part 2: Moist experiments. J. Atmos. Sci., 65, 106–122.

    Article  Google Scholar 

  • MacDonald, N. J., 1968: The evidence for the existence of Rossbylike waves in the hurricane vortex. Tellus, 20, 138–150.

    Article  Google Scholar 

  • Möller, J. D., and M. T. Montgomery, 1999: Vortex Rossby-waves and their influence on hurricane intensification in a barotropic model. J. Atmos. Sci., 56, 1674–1687.

    Article  Google Scholar 

  • Möller, J. D., and M. T. Montgomery, 2000: Tropical cyclone evolution via potential vorticity anomalies in a three-dimensional balance model. J. Atmos. Sci., 57, 3366–3387.

    Article  Google Scholar 

  • Montgomery, M. T., and R. J. Kallenbanch, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435–465.

    Article  Google Scholar 

  • Montgomery, M. T., and J. Enagonio, 1998: Tropical cyclogenesis via convectively forced vortex Rossby wave in a three-dimensional quasi-geostrophic model. J. Atmos. Sci., 55, 3176–3207.

    Article  Google Scholar 

  • Peng, J., M. S. Peng, and T. Li, 2008: Dependence of vortex axisymmetrization on the characteristics of the asymmetry. Quart. J. Roy. Meteor. Soc., 134, 1253–1268.

    Article  Google Scholar 

  • Peng, J., M. S. Peng, T. Li, and E. Hendricks, 2014: Effect of baroclinicity on vortex axisymmetrization, Part II: Baroclinic basic vortex. Adv. Atmos. Sci., 31(6), doi: 10.1007/s00376-014-3238-9.

    Google Scholar 

  • Shapiro, L. J., 2000: Potential vorticity asymmetries and tropical cyclone evolution in a moist three-layer model. J. Atmos. Sci., 57, 3645–3662.

    Article  Google Scholar 

  • Smith, G. B. II, and M. T. Montgomery, 1995: Vortex axisymmetrization: Dependence on azimuthal wavenumber or asymmetric radial structure changes. Quart. J. Roy. Meteor. Soc., 121, 1615–1650.

    Article  Google Scholar 

  • Tuleya, R. E., and Y., Kurihara, 1975: The energy and angular momentum budgets of a three-dimensional tropical cyclone model. J. Atmos. Sci., 32, 287–301.

    Article  Google Scholar 

  • Wang, Y. Q., 2002: Vortex Rossby waves in a numerically simulated tropical cyclone. Part 1: Overall structure, potential vorticity and kinetic budgets. J. Atmos. Sci., 59, 1213–1238.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayi Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, M.S., Peng, J., Li, T. et al. Effect of baroclinicity on vortex axisymmetrization. Part I: Barotropic basic vortex. Adv. Atmos. Sci. 31, 1256–1266 (2014). https://doi.org/10.1007/s00376-014-3237-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-014-3237-x

Key words

Navigation